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AABBSSTTRRAACCTT  
 

 

 The work described in this technical report deals with the problem of providing a 

statistical model of the backscattering from ground surfaces for high-resolution Synthetic 

Aperture Radar (SAR) systems. We report here the results of our research activity. In 

particular, the statistical analysis of amplitude, texture and speckle of high-resolution X-

band MSTAR data of two different vegetated areas, grass field, and tree area. The analysis 

of the data has been performed focusing on the possible statistical differences and 

similarities in the statistical behavior of clutter due to changes of vegetation and terrain 

structure.  

The report is also devoted to the description of the analysis of clutter on many more 

data files, with particular attention to the range and cross-range correlation functions and 

Power Spectral Density (PSD). Also, speckle analysis is also extended to other SAR data 

sets in X- and L-band, at coarser resolution than MSTAR, including data from AIRSAR. 
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1.1 Introduction 

 In a SAR image each pixel corresponds to a pair of voltages for phase and quadrature 

channels. These measured values represent the effects of the scene on the transmitted wave. 

The measured voltages should be converted to “geophysical” units corresponding to the 

complex reflectivity RCS (radar cross section), or backscattering coefficient of the scene. 

Then the measurements made by the SAR are fundamentally determined by electromagnetic 

scattering processes. SAR images may be considered in terms of solution of Maxwell’s 

equations for the propagation geometry and the scattering scene. However, both on theoretical 

and practical grounds, this viewpoint provides only a partial contribution to the understanding 

of the available information. From the point of view of electromagnetic theory, two 

approaches are relevant. The first of these is the Forward Problem, in which the properties of 

the scattering medium and the incoming wave are specified and used to predict the scattered 

field. Solutions to this problem are currently available only by imposing considerable 

restrictions on the scattering medium, for example, by assuming that all length scales in the 

medium are large (or small) relative to the wavelength, or that only surface (not volume) 

scattering is occurring (or viceversa), or that occultation (shadowing) effects can be ignored. 

Even with such restrictions, full wave solutions are in most cases unavailable. 

 Much more important is the Inverse Problem. Methods to solve the Inverse Problem are 

mathematically complicated and difficult. However, the real source of the difficulty in the 

Inverse Problem is not only the mathematics but that there is rarely enough information to 

provide a unique solution. In other words, the number of parameters needed to characterize 

the target in the scattering model exceeds the number of independent measurements available 

at the sensor [Oli98].  
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 These approaches to describe information in SAR images through electromagnetic 

theory have the apparent advantage that they map the observed signal onto physical properties 

of the scene, such a dielectric constant, geometrical factors (e.g. size, height, and roughness), 

and polarizability. In other words, they provide a link between observations and measurable 

quantities on the ground (this is often very difficult to turn into practice because of the 

problem of providing measurements that are truly representative of the scattering medium). 

Typically, both the Forward and Inverse Problems require some a priori knowledge before 

they can be invoked, such as knowledge that the region is woodland or ocean or ice.  

 The primary geophysical quantity determining the SAR data is the complex radar 

reflectivity of the scene. Qualitatively, this concept expresses the fact that when an 

electromagnetic wave scatters from position (x,y) on Earth’s surface, the physical properties 

of the terrain cause changes both phase Φ(x,y) and amplitude A(x,y) of the transmitted wave. 

In fact, the SAR measures the pair (Acosφ, Asinφ) in the in-phase and quadrature channels of 

the receiver. This estimate of the local reflectivity at each pixel can also be represented by the 

complex number ; in this form, the SAR data are known as the complex image. From the 

complex image, a variety of other products can be formed, for example, images of the real 

part Asinφ (the quadrature component), the amplitude A, the phase φ, the intensity I=A

φjAe

2, or 

the log-intensity log(I) (intensity is synonymous of power or energy). The log-image is also 

sometimes referred to as the “dB” image, since for calibrated data each pixel corresponds to a 

linearly scaled estimate of the backscattering coefficient σ° in dB. For a properly calibrated 

system, these are all true measurements of the scattering properties of Earth’s surface (except 

for those effects caused by system noise), but visually they produce quite different 

representations. For example, the real and the imaginary images show some structure, but 

appear extremely noisy, the phase image is noise-like and shows no structure, while the 

amplitude, intensity, and log-images, though noisy, are clearly easier to interpret. In Fig.1.1, 

as an example, we can observe a dB image relative to MSTAR data. 
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Figure 1.1 - SAR image, file HB06209, MSTAR data. 

 

 The noise characterizing SAR images is known as speckle. The speckle is different 

from electrical thermal noise but it is a real electromagnetic measurement.  

 With distributed targets, we can think that each resolution cell contains a number of 

discrete scatters. When radar wave interacts with the target, each scatterer contributes to the 

returned wave with a phase and amplitude change, so the total returned wave is: 
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   (1.1) ∑
=

=
N

k

j
k

j keAAe
1

φφ

 

 This summation is over the number of scatterers illuminated by the beam. The 

individual scattering amplitude is not observable because the individual scatters are on much 

smaller scales than the resolution of the SAR, and there are normally many such scatters per 

resolution cell. 

 An immediate conclusion from (1.1) is that the observed signal will be affected by 

interference effects as a consequence of the phase differences between scatterers. In fact, 

speckle can be understood as an interference phenomenon in which the principal source of the 

noise-like quality of the observed data is the distribution of the phase term kφ . Hence, 

scatterers at different parts of the resolution cell will contribute very different phases to signal 

return even if their scattering behavior is identical. As a result, we can in practice think of the 

phase kφ  as being uniformly distributed in [-π,π] and independent of the amplitude .  kA

 By considering large number of statistically identical scatterers, the analysis reveals 

that:  

•  The in-phase and quadrature components φcos1 Az =  and 2 senz A φ=  will be 

independent and identically distributed Gaussian random variables, with zero mean 

and variance 2 2σ . 

•  The in phase and quadrature components will have a joint probability density function 

(PDF) given by: 

 

  ( )
1 2

2 2
1 2

, 1 2 2

1, expZ Z
z zp z z

πσ σ
 +

= −
 

2   (1.2) 

 

•  The phase observed will be uniformly distributed over [-π,π]. 

•  The amplitude A will have a Rayleigh distribution: 

 

 
2

2

2( ) expA
A Ap A 2σ σ


= −

 


     A≥0 (1.3) 
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with mean value 
2

2
πσ  and standard deviation 21

4
π σ − 

 
. 

 

•  The observed intensity or power I= A²  will have a negative exponential distribution: 

 

 ( ) 2

1 expI 2

IP I
σ σ

= −
 




I

   I≥0 (1.4) 

 

•  The log intensity  has a Fischer-Tippet distribution: lnD =

 

 ( ) 2 exp
D D

D
eP D 2

e
σ σ

 
= −

 
  (1.5) 

 

whose mean value and variance are lnσ2- Eγ  and  2 6π , respectively. The symbol Eγ  denotes 

Euler’s constant whose approximate value is 0.57722. The distributions in equations (1.1)-

(1.5) are of fundamental importance in handling SAR data. Notice that, whit the exception of 

the phase distribution; they are completely characterized by a single parameter σ2 which 

carries all the available information about the illuminated area. From (1.4) we can see that σ2 

corresponds to the average intensity. 

 By analyzing an SAR image as that in figure 1.2 in the wooded region, it is apparent 

that there are fluctuations in addition to speckle. Physically this appears to correspond to 

strong returns from the crowns of trees with shadows behind them. If we disregard the 

deterministic positions of these light and dark fluctuations, we can treat this type of natural 

clutter as a noise-like texture. Note that texture is a consequence of fluctuation in the RCS. 

 Let us now identify measures that can provide discrimination between such classes of 

texture. Typically, in SAR images the brightness of the field is the same as the wood, a 

discriminating feature could then be the contrast (= IIvar ), which takes different values 

for the field and woodland regions. Generally, the result for the field region is close to unity, 

as expected for pure speckle, while the woodland region has increased fluctuations. Urban 

areas typically display even stronger contrast. Another distinguishing characteristic can be 

spatial size of the forms that appear in the image. In the field region, only speckle fluctuations 
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are observed. The woodland sample also includes variation on a scale consistent with tree size 

and separation. Generally, images with different vegetation present different statistics 

characteristics [Oli98]. 

 

 

Figure 1.2 - SAR image, file HB06198, MSTAR data. 

 
 Many distributions have been proposed in the literature to model the amplitude 

probability density function (APDF) of ground SAR data. In this work, we compare the 

histogram or empirical APDF of the data with Log-normal (LN), Weibull (W), K, and 
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Generalized K (GK) PDFs. The expressions of these PDFs and their moments are reported 

below (see also [Gre04], [Far97]), where R = z[i]  denotes the clutter amplitude: 

 

Log-normal (LN): 

 

PDF  ( ) ( )2
22

1 1exp ln ln
22

rp r r u r
r

δ
σπσ
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( )

  (1.6) 

 

Moments { } )2/exp( 22σδ nRE nn =           n=1,2,2... (1.7) 

 

where δ is the scale parameter and σ is the shape parameter. 

 

Weibull (W): 
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where c is the shape parameter and b the scale parameter. Rayleigh model is a particular case 

of Weibull for c=2, while for c=1 we have the exponential negative probability density 

function (PDF). 

 

K Model: 
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where: Г(.) is the Gamma function, Kν-1   is the Bessel function of third kind and order ν-1, ν is 

shape parameter, µ is scale parameter. 

 

K-Generalized Model (lognormal texture, LNT): 
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K-Generalized Model (Gamma Generalized texture, GK): 
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 In the past, the most popular model for clutter analysis was the Gaussian. According to 

it, r(n) is a stationary Gaussian complex process, ( ) ( ) ( )njrnrnr QI +=  with  and ( )nrI ( )nrQ  the 

in-phase and quadrature component respectively, both with zero mean value. This model is a 

consequence of the Central Limit Theorem which supposes a large number of scatterers in the 

resolution cell and no dominant scatterers. 

 In SAR systems with a very high resolution, the number of scatterers cannot be 

considered infinite and sometimes dominant scatterers can be present, then the hypotheses of 

the central limit theorem are not verified; the Gaussian complex model is inadequate and for 

the description of clutter amplitude we cannot apply the Rayleigh PDF. 
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 A model that in the last 15 years became popular in the description of clutter data, 

particularly for real aperture radars, is the compound-Gaussian model. According to it, the 

samples of clutter complex envelope can be written as the product of two uncorrelated 

processes, that is: 

 

  ( ) ( ) ( )nxnnr τ=  (1.16) 

 

where  is a stationary Gaussian complex process called speckle, and ( )nx ( ) ( ) ( )njxnxnx QI += , 

where  and (nxI ) ( )nxQ  are respectively the in-phase and quadrature components. ( )nxI  

and  satisfy the following equations: ( )nxQ

 

  ( ){ } ( ){ } 0== nxEnxE QI  (1.17) 

 

  ( ){ } ( ){ }
2
122 == nxEnxE QI . (1.18) 

 

Therefore 

 

  ( ){ } 12 =nxE  (1.19) 

 

 The amplitude of the speckle is Rayleigh-distributed.  

 τ(n) is a real positive process called texture and represents the varying RCS (Radar 

Cross Section) in the SAR image. If the PDF of clutter and texture are known, we can obtain 

the distribution of the clutter amplitude trough the expression: 

 

  ( ) ( ) ( )nxnRnr τ==  (1.20) 

 

  ( ) ( ) ( ) τττ τ dfrfrf RR ⋅= ∫
+∞

∞−

 (1.21) 

 

 9



 
  

 It is worth noticing that in this analysis we consider terrain images for which the clutter 

processes are not variable with time but with space. The n index generally denotes the time 

lags. For our data n denotes the space position. 

 Weibull, K and Generalized-K models are particular cases of the compound-Gaussian 

model1. The speckle is always Gaussian distributed, while each different model is 

characterized by the distribution of the texture. 

 Texture can be characterized by the Gamma (Γ) PDF [Gin02]: 

 

  ( ) ( )
( )τµνν

ν

τ τ
µ
ν

ν
τ −−









Γ

= ep 11                       τ≥0 (1.22) 

 

where Г(.) is the gamma function, µ the mean value, µ=E{τ}; ν  is the order parameter (ν is a 

measure of Gaussian deviation); in other words ν is a measurement of the non-homogeneity 

of the texture. The variance of τ is related to ν by { } νµτ 2var = . 

 Experimental values of ν are generally larger then 0.1. When ν→∞, var{τ} →0 and the 

clutter becomes Gaussian-distributed; this situation corresponds to a homogeneous scene. 

 In this condition (Gamma distributed texture and Gaussian distributed speckle), the 

clutter amplitude r is distributed by a K PDF, whose analytic expression is reported in eq. 

(1.5). In the case of Gaussian PDF for speckle and Generalized-Gamma PDF for the texture, 

we obtain a clutter amplitude modeled as GK (Generalized-K). This PDF is expressed by eq. 

(1.9). The Generalized Gamma (GΓ) PDF is given by [Gin00]: 
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 (1.23) 

 

where u(.) is step function, Г(.) is the Gamma function, µ is scale parameter, ν is the shape 

parameter and b is the power parameter. 

 In the case of Gaussian PDF for speckle and Lognormal PDF for texture, we obtain a 

clutter amplitude distribution modeled as GK “with Lognormal texture”; analytic expression 

is reported in (1.7).  
                                                 
1 The Lognormal is not a compound-Gaussian model. 
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 Characteristic parameters of Lognormal, Weibull, K, GK with Lognormal texture and 

GK with Gamma Generalized texture PDFs, have been estimated trough moments method, by 

equating the expressions of theoretical moments with the corresponding estimates obtained by 

the expression: 

 

  { } ( ) ( )∑
=

==
N

i

n
R

n irnmRE
1

ˆˆ  (1.24) 

 

where N is the number of samples for the considered image (as instance, N=2626048 for the 

HB06171 file). Characteristic parameters of GK with GΓ texture PDF have been estimated by 

the following method [Gin00]: 

 

  ( ) ( )
( )

2
5

1

ˆˆ arg min R R

n R

m n m n
m n=

−
= ∑

Λ
Λ  (1.25) 

 

where  is the vector of parameters to be estimated. Λ

 The data we processed have been obtained by Sandia National Laboratory with Starlos 

SAR on September, 05, 2005 at Huntsville, Alabama (USA). This sensor operates in X-band 

(central frequency 9.6 GHz). Principal characteristics of this radar are reported in Table 1.1. 

 The dataset consists of 50 files; each file presents a header in which some information 

on the radar characteristics is reported: frequency, resolution, etc. 

Each file, after the header, contains modulus and phase of the data. The modulus is used for 

visualization of images. These images represent different type of terrain. 
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Data Collectors Sandia National Lab 

Date of the acquisition 05/09/1995 

site Huntsville, Alabama (USA) 

Sensor name Twin Otter 

Range resolution 0.3047 m 

Cross range resolution 0.3047 m 

Range pixel spacing 0.2021048 m 

Cross range pixel spacing 0.203125 m 

Additive Noise -32 to -34 dB 

Multiplicative Noise -10 dB 

Central frequency 9.60 GHz 

Bandwidth 0.591 GHz 

Dynamic Range 64 dB 

Azimuth Beamwidth  8.8° 

Elevation Beamwidth 6.8°  

Polarization HH 

Bits per pixel 16 

Radar position  bottom 

Table 1.1 – MSTAR radar characteristics 

 
We have classified the files by observing SAR images and by noting presence and absence of 

natural or man-made objects. This classification is based on visual inspection. We have 

recognized four terrain types: 

1. grass field 

2. land with dense vegetation 

3. land with sparse vegetation  

4. land characterized by object man-made (farm-house) and vegetation 

 This classification is purely visual and it is not rigorous (we can find some man-made 

object in areas classified as “land with dense vegetation”). 

 The modulus of data is saved in matrices with variable dimensions. All the matrices 

have the same number of rows (1784), while the columns vary from a minimum length of 

1472 to a maximum length of 1478. 

 12



 
  

 We have analyzed grass field first, in particular 7 files, cut in patches obtained from the 

original images. Later we will consider the file HB06202 which is relative to dense vegetation 

terrain. 

 

1.2 Statistical analysis of grass field  

1.2.1 HB06171 File  
 Statistical analysis of this file has been performed on the overall image and on two 

patches obtained by the original image. The size of the large image is 1784x1472 pixels. The 

two patches have size (1,892)x(1,1472) and (893,1784)x(1,1472) respectively, where in (x,y) 

x is the first pixel and y the last one in range and cross-range. The whole image is reported in 

Fig. 1.2. 

 
Figure 1.3 - Grass field of HB06171 file. 

 

 In the following, we show the results of the statistical analysis. Fig. 1.4 shows plots of 

the PDFs for the overall image. Histogram has been calculated on 101 bins (intervals); Fig. 

1.5 and Fig. 1.6 show the normalized moments and the “Weibull paper” [Far97]. 
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Figure 1.4 - Amplitude PDF of clutter data for the image (1784x1472). 
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Figure 1.5 - Normalized moments for the image (1784x1472). 
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Figure 1.6 - Weibull paper for the image (1784x1472). 

 

 

Figure 1.7 - Grass field in the upper patch (1,892)x(1,1472). 
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 Figure 1.7 shows the image of the upper patch considered in the statistical analysis and 

Figs. 1.8-1.10 the results of statistical analysis for this patch ((1,892)x(1,1472)). 
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Figure 1.8 - Amplitude PDF of clutter data for the patch (1,892)x(1,1472). 
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Figure 1.9 - Normalized moments for the patch (1,892)x(1,1472). 
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Figure 1.10 - Weibull paper for the patch (1,892)x(1,1472). 

 
 
 
 
 
 We also report the results for the lower patch in Fig. 1.11-1.14. The results are very 

similar for the whole image and the two patches due to the homogeneity of the MSTAR data 

in this area.  
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Figure 1.11 - Grass field in the lower patch (893,1784)x(1,1472). 
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Figure 1.12 - Amplitude PDF of clutter data for the patch (893,1784)x(1,1472). 
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Figure 1.13 - Normalized moments for the patch (893,1784)x(1,1472). 
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Figure 1.14 - Weibull paper for the patch (893,1784)x(1,1472). 
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 In Table 1.2 we report the parameters’ values estimated by the Method of Moments 

(MoM) for the whole image and the two patches. 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂            µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂             m̂

(1784x1472) 1.66    15.66 11.93     0.57 2.86    135.47 0.35   150.84   4.72 0.33      114.83 
(1,892)x(1,1472) 1.63    15.42 11.70     0.58 2.86    132.96 0.28   124.28   5.33 0.36      110.64 
(893,1784)x(1,1472) 1.69    15.90 12.19     0.55 2.86    137.99 0.36   151.71   5.02 0.29      119.12 

 

Table 1.2 - Parameter values of models tested on HB06171 file. 

 
 

 Due to the homogeneity of the image, the statistical differences between whole image 

and two patches are negligible, as also evidenced by the PDF parameters, reported in Table 

1.2.  

 All the models, but the log-normal, show a good fitting with the histogram. Some 

deviation is present only on the tail. Similar conclusions can be drawn observing the plots of 

moments, where the best models seem to be K, W and LNT. Looking at the values of the PDF 

parameters, we can conclude that the clutter of this image is not spiky. In fact, the average 

value of Weibull shape parameter c is close to 2, meaning that the clutter is almost Rayleigh 

distributed.2 

 As a deeper analysis, we applied two goodness-of-fit test, Kolmogorov-Smirnov and 

Kuiper tests. Details on the mathematical theory and practical implementation of these tests 

are described in Appendix A.  

 The results are reported in Tables 1.2 and 1.3 relating to the whole images and the two 

patches. It is apparent that both tests provide very similar results for all the models, and then 

they do not help us in identifying the best fitting. We report in red the model that exhibits the 

smallest distance to the data distribution. 

 

 

 

 
 

                                                 
2 We use Weibull shape parameter c to measure the spikiness of the clutter because the meaning of this 
parameter is very easy to understand. 
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1784x1472 W LN K GK LNT 
Prob 100 % 97 % 100 % 100 % 100 % 

d 1.48*10-2 6.71*10-2 2.25*10-2 1.57*10-2 1.23*10-2 
 

100 % 92 % 100 % 100 % 100 % (893,1784)x (1,1472) 
1.55*10-2 7.66*10-2 2.86*10-2 1.70*10-2 1.17*10-2 

 
100 94 % 100 % 100 % 100 % (1,892)x(1,1472) 

1.44*10-2 7.30*10-2 1.70*10-2 1.70*10-2 1.44*10-2 
 

Table 1.3 - Results of Kolmogorov test -Smirnov for all models utilized. 

 

1784x1472 W LN K GK LNT 
Prob 100 % 97 % 100 % 100 % 100 % 

d 2.84*10-2 11.10*10-2 2.20*10-2 2.61*10-2 2.4*10-2 
 

100 % 93 % 100 % 100 % 100 % (893,1784)x (1,1472) 
2.92*10-2 12.20*10-2 2.87*10-2 2.78*10-2 2.10*10-2 

 
100 94 % 100 % 100 % 100 % (1,892)x(1,1472) 

2.44*10-2 9.30*10-2 2.70*10-2 2.70*10-2 1.90*10-2 
 

Table 1.4 - Results of  Kuiper test for all models utilized. 
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1.2.2 HB06172 File 
 The Figure 1.15 shows the image considered for statistical analysis. 

 

 

Figure 1.15 - Grass field for the HB06172 file. 

 

 The analysis has been carried out on the total image, on the homogeneous upper patch 

(1,1000)x(1,1472), on the lower patch (1000,1784)x(1,1472) where we observe a deformation 

of the terrain, and on the central patch (700,900)x(1,1472) where the deformation is well 

evident. 

 In Figs 1.16-1.18 we show the results relating to the whole image and in Figs 1.19-1.30 

the results of the patches. 
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Figure 1.16 - Amplitude PDF of clutter data for the overall image (1784x1472). 
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Figure 1.17 - Normalized moments for the overall image (1784x1472). 
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Figure 1.18 - Weibull paper for the overall image (1784x1472). 

 

Figure 1.19 - Image with the lower patch (1000,1784)x(1,1472). 
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Figure 1.20 - PDFs of the clutter for the patch (1000,1784)x(1,1472). 
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Figure 1.21 - Normalized moments for the patch (1000,1784)x(1,1472). 
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Figure 1.22 - Weibull paper for the patch (1000,1784)x(1,1472). 

 
Figure 1.23 - Image with the upper patch (1,1000)x(1,1472). 
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Figure 1.24 - PDF of clutter for the patch (1,1000)x(1,1472). 
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Figure 1.25 - Normalized moments for the patch (1,1000)x(1,1472). 
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Figure 1.26 - Weibull paper for the patch (1,1000)x(1,1472). 

 

Figure 1.27 - Image with the central patch (700,900)x(1,1472). 
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Figure 1.28 - PDF of clutter for the patch (700,900)x(1,1472). 
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Figure 1.29 - Normalized moments for the patch (700,900)x(1,1472). 
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Figure 1.30 - Weibull paper for the patch (700,900)x(1,1472). 

 
 Again, the statistical differences between whole image and the three patches are 

negligible, as also evidenced by the PDF parameters reported in Table 1.5. We can only 

observe that the central patch is a little bit spikier than the other two. 

 All the models, but the log-normal, show a good fitting with the histogram. The results 

of KS and Kuiper tests are reported in Tables 1.5 and 1.6. Both tests provide very similar 

results for all the models. 

 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂            µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂            m  ˆ

(1784x1472) 1.66   15.06 11.47     0.57 2.86    125.28 0.28   112.95  5.64 0.33     106.30 
(1,1000)x(1,1472) 1.64   15.04 11.47     0.57 2.86    126.14 0.25  107.44  5.83 0.36     105.44 
(1000,1784)x(1,1472) 1.69   15.09 11.57     0.55 2.86    124.21 0.36  140.87  4.76 0.29     107.43 
(700,900)x(1,1472) 1.54   14.27 10.62     0.62 2.18    118.50 0.19  86.65  5.98 0.48       92.05 

 

Table 1.5 - Parameter estimates of models tested on HB06172 file. 
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1784x1472 W LN K GK LNT 
Prob 100 % 96 % 100 % 100 % 100 % 

d 1.54*10-2 6.34*10-2 2.53*10-2 1.36*10-2 1.01*10-2 
 

100 % 91 % 100 % 100 % 100 % (700,900)x (1,1472) 
1.85*10-2 7.76*10-2 1.05*10-2 1.67*10-2 2.25*10-2 

 
100 96 % 100 % 100 % 100 % (1,1000)x(1,1472) 

1.51*10-2 7.00*10-2 1.95*10-2 1.43*10-2 1.25*10-2 
 

100 % 95 % 100 % 100 % 100 % (1000,1784)x(1,1472) 
1.70*10-2 7.15*10-2 2.39*10-2 1.31*10-2 0.99*10-2 

 

Table 1.6 - Results of Kolmogorov -Smirnov test. 
 

1784x1472 W LN K GK LNT 
Prob 100 % 99 % 100 % 100 % 100 % 

d 2.05*10-2 10.05*10-2 2.27*10-2 2.20*10-2 1.96*10-2 
 

100 % 93 % 100 % 100 % 100 % (700,900)x (1,1472) 
2.34*10-2 11.32*10-2 2.02*10-2 2.64*10-2 10.00*10-2 

 
100 % 97 % 100 % 100 % 100 % (1,1000)x(1,1472) 

2.93*10-2 11.32*10-2 2.71*10-2 2.31*10-2 2.38*10-2 
 

100 % 97 % 100 % 100 % 100 % (1000,1784)x(1,1472) 
2.24*10-2 11.13*10-2 4.12*10-2 2.16*10-2 1.85*10-2 

 

Table 1.7 - Results of Kuiper test. 
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1.2.3 HB06173 File 

 

 
Figure 1.31 - Grass field for the HB06173 file. 

 

 

 The analysis has been carried out on the overall image (Fig. 1.31), on the patch 

((400,1784)x(1,300)) which contains a man-made object (maybe a street), and on the patch 

((800,1200)x(600,1000)) which encloses a very homogeneous region of terrain. All the 

statistical results are summarized in Figs. 1.32-1.42 and in Tables 1.8-1.9. They are very 

similar to those of the previous file. 
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Figure 1.32 - PDFs of clutter for the whole image (1784x1474). 
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Figure 1.33 - Normalized moments for the whole image (1784x1474). 
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Figure 1.34 - Weibull paper for whole image (1784x1474). 
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Figure 1.35 - Terrain image with the patch (400,1474)x(1,300). 
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Figure 1.36 - PDF of clutter for the patch (400,1784)x(1,300). 
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Figure 1.37 - Normalized moments for the patch (400,1784)x(1,300). 
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Figure 1.38 - Weibull paper for the patch (400,1784)x(1,300). 

 
Figure 1.39 - Grass field with the patch (800,1200)x(600,1000). 
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Figure 1.40 - PDF of clutter for the patch (800,1200)x(600,1000). 
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Figure 1.41 - Normalized moments for the patch (800,1200)x(600,1000). 
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Figure 1.42 -Weibull paper for the patch (800,1200)x(600,1000). 

 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂            µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂             m̂

(1784x1472) 1.80   16.44 12.70     0.53 2.86   142.52 0.61   222.34  4.62 0.18     130.06 
(400,1784)x(1,300) 1.63   14.67 11.13     0.58 2.86   120.45 0.30  121.25  4.93 0.37     100.08 
(800,1200)x(600,1000) 1.90   18.17 14.20     0.50 2.86   169.11 79.5    1.57    0.45 0.08     162.08 

 

Table 1.8 - Parameter estimates of models tested on HB06173 file. 

 
 

1784x1472 W LN K GK LNT 
Prob 100 % 98 % 99 % 100 % 100 % 

d 1.06*10-2 6.46*10-2 5.30*10-2 0.85*10-2 2.68*10-2 
 

100 % 91 % 100 % 100 % 100 % (400,1784)x (1,300) 
1.47*10-2 7.74*10-2 2.37*10-2 1.85*10-2 1.92*10-2 

 
100 96 % 100 % 100 % 100 % (800,1200)x(600,1000) 

0.65*10-2 7.58*10-2 5.29*10-2 1.23*10-2 2.86*10-2 
 

Table 1.9 - Results of KS test. 
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1784x1472 W LN K GK LNT 
Prob 100 % 97 % 100 % 100 % 100 % 

d 1.98*10-2 11.12*10-2 6.47*10-2 1.53*10-2 2.24*10-2 
 

100 % 86 % 100 % 100 % 100 % (400,1784)x (1,300) 
1.25*10-2 12.28*10-2 6.87*10-2 2.42*10-2 2.74*10-2 

 
100 96 % 100 % 100 % 100 % (800,1200)x(600,1000) 

0.65*10-2 7.58*10-2 5.29*10-2 1.23*10-2 2.86*10-2 
 

Table 1.10 - Results of Kuiper test. 

 

 

1.2.4 HB06174 File 
 

 
Figure 1.43 - Grass field image of HB06174 file 

. 

 The analysis has been carried out on the overall image (Fig. 1.43), on the homogeneous 

patch (1400,1784)x(1,400) (see Fig. 1.47), and on the patch (400,1000)x(800,1400) (Fig. 

1.51). The statistical analysis is summarized in Figs. 1-43-1.54 and in Tables 1.11-1.12. 
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Figure 1.44 - PDF of data clutter for the total image (1784x1476). 
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Figure 1.45 - Normalized moments for the total image (1784x1476). 
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Figure 1.46 - Weibull paper for the total image (1784x1476). 

 

 
Figure 1.47 - Image with the evidenced patch (1400,1784)x(1,400). 
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Figure 1.48 - PDF of data clutter for the patch (1400,1784)x(1,400). 
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Figure 1.49 - Normalized moments for the patch (1400,1784)x(1,400). 
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Figure 1.50 - Weibull paper for the patch (1400,1784)x(1,400). 

 
Figure 1.51 - Image with the patch (400,1000)x(800,1400). 
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Figure 1.52 - PDF of data clutter for the patch (400,1000)x(800,1400). 
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Figure 1.53 - Normalized moments for the patch (400,1000)x(800,1400). 
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Figure 1.54 - Weibull paper for the patch (400,1000)x(800,1400). 

 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂            µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂           m  ˆ

(1784x1472) 1.69   15.87 12.17     0.55 2.86   137.68 0.30   128.16  5.92 0.30     118.59 
(1400,1784)x(1,400) 1.83   17.76 12.77     0.50 2.86   164.34 1.02   360.99  4.18 0.14     152.91 
(400,1000)x(800,1400) 1.56   15.25 11.45     0.60 2.18   134.44 0.21   100.27  6.10 0.47     106.50 

 

Table 1.11 - Parameter estimates of models tested on HB06174 file. 

 
 

1784x1472 W LN K GK LNT 
Prob 100 % 88 % 100 % 100 % 100 % 

d 1.15*10-2 8.16*10-2 2.03*10-2 1.52*10-2 1.20*10-2 
 

100 % 86 % 100 % 100 % 100 % (1400,1784)x (1,400) 
1.10*10-2 8.33*10-2 5.82*10-2 0.78*10-2 1.33*10-2 

 
100 96 % 100 % 100 % 100 % (400,1000)x(800,1400) 

1.41*10-2 8.73*10-2 1.72*10-2 2.76*10-2 2.93*10-2 
 

Table 1.12 - Results of KS test. 
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1784x1472 W LN K GK LNT 
Prob 100 % 88 % 100 % 100 % 100 % 

d 2.28*10-2 11.31*10-2 4.03*10-2 2.48*10-2 2.21*10-2 
 

100 % 86 % 100 % 100 % 100 % (1400,1784)x (1,400) 
1.83*10-2 12.64*10-2 7.50*10-2 1.37*10-2 1.96*10-2 

 
100 96 % 100 % 100 % 100 % (400,1000)x(800,1400) 

2.76*10-2 12.94*10-2 2.37*10-2 4.17*10-2 4.82*10-2 
 

Table 1.13 - Results of Kuiper test. 

 

 

1.2.5 HB06176 File 
 Figure 1.55 shows the image of this file. We can observe that this image is very 

homogeneous, for this reason we have considered the whole image and one patch only. The 

results are summarized in the following figures. 

 

 
Figure 1.55 - Grass field of HB06176 file. 

 

 

 46



 
  

10-3

10-2

10-1

0 10 20 30 40

W
LN
K
GK
LNT
Histo

PD
F

amplitude (H)
 

Figure 1.56 - PDF of clutter for the whole image (1784x1476).  
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Figure 1.57 - Normalized moments for the whole image (1784x1476). 
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Figure 1.58 - Weibull paper for the whole image (1784x1476). 

 

 
Figure 1.59 - Image with the patch (600,1200)x(500,1000). 
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Figure 1.60 - PDF of clutter for the patch (600,1200)x(500,1000). 
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Figure 1.61 - Normalized moments for the patch (600,1200)x(500,1000). 
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Figure 1.62 - Weibull paper for the patch (600,1200)x(500,1000). 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂            µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂           m  ˆ

(1784x1472) 1.52   12.07 9.73     0.62 1.98   100.37 0.34   126.31  2.32 0.51     77.60 
(600,1200)x(500,1000) 1.54   12.96 9.64     0.62 2.18   97.81 0.27   104.13  2.99 4.88     76.63 

 

Table 1.14 - Parameter estimates of models tested on HB06176 file. 
 

1784x1472 W LN K GK LNT 
Prob 100 % 99 % 100 % 100 % 100 % 

d 2.02*10-2 5.29*10-2 1.69*10-2 1.85*10-2 1.80*10-2 
 

100 % 100 % 100 % 100 % 100 % (600,1200)x (500,1000) 
2.00*10-2 5.56*10-2 1.96*10-2 2.16*10-2 1.80*10-2 

 

Table 1.15 - Results of KS test. 
 

1784x1472 W LN K GK LNT 
Prob 100 % 100 % 100 % 100 % 100 % 

d 5.66*10-2 8.45*10-2 2.85*10-2 2.67*10-2 2.08*10-2 
 

100 % 100 % 100 % 100 % 100 % (600,1200)x (500,1000) 
5.77*10-2 8.71*10-2 2.76*10-2 4.07*10-2 2.14*10-2 

 

Table 1.16 - Results of Kuiper test. 
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1.2.6 HB06177 File 

 

 
Figure 1.63 - Grass field for HB06177 file. 

 

 Figure 1.63 shows the considered image, which represents a region of terrain mainly 

homogeneous and a small area (on the right of figure) characterized by dense vegetation and 

shadows. The analyzed patches of this image are ((1,800)x(1,800)), ((600,1200)x(800,1476)) 

and ((1400,1784)x(1100,1476)). The results of the statistical analysis are shown in Fig. 1.64-

1.78 and Tables 1.17-1.19. 

 The results of the patches (1,800)x(1,800) and (600,1200)x(800,1476) are similar to 

those of the previous files and of the overall image. Almost all the models, but the log-

normal, we tested show a good fitting. Non-negligible differences are apparent in the results 

relating to the smallest patch (1400,1784)x(1100,1476). The clutter is spikier ( c ), the 

histogram presents longer tails and the log-normal model as well shows a good fitting. These 

differences are due to the presence of dense vegetation and shadows, then, the area is not 

more homogeneous.  

1≅
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Figure 1.64 - PDF of data clutter for the whole image (1784x1476). 
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Figure 1.65 - Normalized moments for the whole image (1784x1476). 
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Figure 1.66 - Weibull paper for the whole image (1784x1476). 

 

 
Figure 1.67 - Grass field in the patch (1,800)x(1,800). 
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Figure 1.68 - PDFs of clutter amplitude for the patch (1,800)x(1,800). 

 

100

101

102

1 2 3 4 5 6

Data
W
LN
K
LNT
GK

no
rm

al
iz

ed
 m

om
en

ts

moment order  
Figure 1.69 - Normalized moments for the patch (1,800)x(1,800). 
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Figure 1.70 - Weibull paper for the patch (1,800)x(1,800). 

 
Figure 1.71 - Image of the patch (600,1200)x(800,1476). 
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Figure 1.72 - PDFs of data clutter for the patch (600,1200)x(800,1476). 
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Figure 1.73 - Normalized moments for the patch (600,1200)x(800,1476). 
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Figure 1.74 - Weibull paper for the patch (600,1200)x(800,1476). 

 
Figure 1.75 - Patch (1400,1784)x(1100,1476). 
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Figure 1.76 - PDFs of data for the patch (1400,1784)x(1100,1476). 
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Figure 1.77 - Normalized moments for the patch (1400,1784)x(1100,1476). 
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Figure 1.78 - Weibull paper for the patch (1400,1784)x(1100,1476). 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂           µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂            m̂

(1784x1472) 1.57  14.21 10.66     0.60 2.46  116.04 0.25   104.88  4.99 0.45      92.66 
(1,800)x(1,800) 1.76  15.50 11.97     0.53 2.86  127.72 0.61   204.05  2.85 0.21    114.85 
(600,1200)x(800,1476) 1.40  12.13 9.57      0.67 1.33  109.12 0.18    86.62   4.76 0.72      76.16 
(1400,1784)x(1100,1476) 1.05    9.18 6.15      0.87 0.54    76.82 0.06    39.44   5.74 1.60      34.50 

 

Table 1.17 - Parameter estimates of models tested on HB06177 file. 

 
 

1784x1472 W LN K GK LNT 
Prob 100 % 94 % 100 % 100 % 100 % 

d 1.61*10-2 7.28*10-2 0.99*10-2 1.08*10-2 1.73*10-2 
 

100 % 99 % 100 % 100 % 100 % (1,800)x (1,800) 
1.87*10-2 5.96*10-2 5.10*10-2 1.50*10-2 1.43*10-2 

 
100 % 91 % 100 % 100 % 100 % (600,1200)x (800,1476) 

2.46*10-2 7.71*10-2 2.81*10-2 2.30*10-2 2.87*10-2 
 

89 % 100 % 43 % 63 % 100 % (1400,1784)x 
(1100,1476) 8.01*10-2 2.31*10-2 12.00*10-2 10.32*10-2 4.86*10-2 

 

Table 1.18 - Results of KS test. 
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1784x1472 W LN K GK LNT 
Prob 100 % 96 % 100 % 100 % 100 % 

d 2.84*10-2 11.64*10-2 1.57*10-2 1.99*10-2 2.76*10-2 
 

100 % 99 % 100 % 100 % 100 % (1,800)x (1,800) 
2.40*10-2 9.93*10-2 5.94*10-2 2.53*10-2 2.47*10-2 

 
100 % 92 % 100 % 100 % 100 % (600,1200)x (800,1476) 

4.27*10-2 11.24*10-2 4.02*10-2 4.02*10-2 5.94*10-2 
 

73 % 100 % 65 % 36 % 100 % (1400,1784)x 
(1100,1476) 10.46*10-2 4.47*10-2 15.33*10-2 18.11*10-2 7.84*10-2 

 

Table 1.19 - Results of Kuiper test. 

 

 

1.2.7 HB06188 File 
 

 
Figure 1.79 - Grass field of file HB06188 file. 

 

 Of this file we tested the whole image, a homogeneous patch ((800,1400)x(1000,1474)) 

and the patch ((1,600)x(1000,1474)), containing a man-made object (a street). Results are 

summarized in the following figures and tables. 
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Figure 1.80 - PDF of clutter for the whole image (1784x1474). 
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Figure 1.81 - Normalized moments for the whole image (1784x1474). 
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Figure 1.82 - Weibull paper for the whole image. 

 
Figure 1.83 - Grass field in the patch (1,600)x(1000,1474). 
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Figure 1.84 - PDF of clutter amplitude for the patch (1,600)x(1000,1474). 
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Figure 1.85 - Normalized moments for the patch (1,600)x(1000,1474). 
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Figure 1.86 - Weibull paper for the patch (1,600)x(1000,1474). 

 

 
Figure 1.87 - Grass field in the patch (800,1400)x(1,800). 
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Figure 1.88 - PDF of clutter amplitude for the patch (800,1400)x(1,800). 
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Figure 1.89 - Normalized moments for the patch (800,1400)x(1,800). 
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Figure 1.90 - Weibull paper for the patch (800,1400)x(1,800). 

 

 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂           µ̂  

GK 
ˆν       µ̂         b̂  

LNT 
2σ̂            m̂

(1784x1472) 1.67  12.22 9.38       0.55 2.86    82.09 0.82   169.63  2.29 0.31      70.20 
(1,600)x(1000,1476) 1.56  11.88 8.91       0.60 2.18    81.33 0.76   167.45  1.86 0.46      64.66 
(800,1400)x(1,800) 1.79  12.57 9.71       0.53 2.86    82.49 2.75   238.34  1.46 0.19      75.98 

 

Table 1.20 - Parameter estimates of models tested on HB06188 file. 

 

 
 

1784x1472 W LN K GK LNT 
Prob 100 % 98 % 100 % 100 % 100 % 

d 1.87*10-2 6.63*10-2 4.13*10-2 1.23*10-2 1.19*10-2 
 

100 % 99 % 100 % 100 % 100 % (1,600)x (1000,1476) 
2.53*10-2 5.55*10-2 1.93*10-2 1.35*10-2 1.20*10-2 

 
100 % 96 % 97 % 100 % 100 % (800,1400)x (1,800) 

1.79*10-2 6.94*10-2 6.68*10-2 1.84*10-2 1.76*10-2 
 

Table 1.21 - Results of KS test. 
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1784x1472 W LN K GK LNT 
Prob 100 % 99 % 100 % 100 % 100 % 

d 2.50*10-2 10.97*10-2 5.00*10-2 1.84*10-2 1.95*10-2 
 

100 % 99 % 100 % 100 % 100 % (1,600)x (1000,1476) 
4.60*10-2 9.17*10-2 2.80*10-2 2.21*10-2 1.75*10-2 

 
100 % 96 % 97 % 100 % 100 % (800,1400)x (1,800) 

2.58*10-2 10.97*10-2 8.01*10-2 2.12*10-2 2.90*10-2 
 

Table 1.22 - Results of Kuiper test. 

 

1.2.8 Conclusions 
 From our analysis we can conclude that, in general, the clutter scattered by a grass field 

is not very spiky a can be well modeled by Weibull, GK and K models. We used the 

estimated shape parameter of the Weibull PDF as a measure of the spikiness of the clutter. In 

our data, this parameter is, in average, close to 1.7 (for c=2 we have a Rayleigh distribution) 

then the clutter is homogeneous. We obtained a much lower value only for the patch 

(1400,1784)x(1100,1476) of the HB06177 file reported in Figure 1.75. For this patch c=1.054 

and this difference is mainly due to the presence of dense vegetation and shadows. 

 To complete our statistical analysis we applied KS and Kuiper goodness-of-fit tests. 

Both test provided very similar results, but they do not allow us to distinguish clearly between 

the different models we used. 
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1.3 Terrain with dense vegetation and trees 

 1.2.1 HB06202 file  
 

 

 

 

 
Figure 1.91 - Image of HB06202 file. Terrain with dense vegetation and trees. 

 

 

 

 

 We now consider the image of file HB06202 which represents, as shown in Figure 1.91, 

a region with dense vegetation and trees. We performed same statistical analysis as for the 

images with grass field on the whole image. The histogram and the moments are plotted in 

Fig. 1.92 and 1.93 respectively. 
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Figure 1.92 - PDF of data clutter for the whole image (1784x1478). 
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Figure 1.93 - Normalized moments for the whole image (1784x1478) 
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 By observing Figure 1.92 we can conclude that none of tested models exhibits a good 

fitting with the data. Based on this result, we introduced another model which takes into 

account the presence of thermal noise that, maybe, is not negligible in the shadowed areas. 

This new model is the “K+ thermal noise”. It is characterized by the following first order PDF 

and moments [Far97]: 

 

K+ thermal noise model 

 

 PDF ( ) ( )
( ) ( ) ττ

µ
ν

στστ
τ

ν
µν νν

drrrp
GG

r 

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−
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 (1.26) 

 

 Moments  { } ( )
( ) ( ) ττ
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ν
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2

0
2

1

0

1E  (1.27) 

 

 To estimate the characteristic parameters ν , µ  and 2
Gσ  we applied again the method of 

moments. In this case we considered the moments of second, fourth and sixth order and we 

rewrite their expressions as a function of the clutter-to-noise ratio CNR= 2
Gσµ  obtaining the 

following analytical expressions: 

 

  { } ( )CNRRE G += 12 22 σ  (1.28) 

 

  { } ( )






 +

++= 244 1218 CNRCNRRE G ν
νσ  (1.29) 

 

  { } ( )( )






 ++

⋅⋅+
+

⋅⋅+⋅+= 2
3266 211213736124

ν
νν

ν
νσ CNRCNRCNRRE G  (1.30) 

 

 We resolve the system of eqs. (1.28)-(1.30) as a function of CNR, ν and . Then we 

obtained µ from the CNR value. 

2
Gσ

 The result of this model is plotted in Fig. 1.94 and the estimated parameters are reported 

in Table 1.22.  
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Figure 1.94 - PDF of clutter amplitude: K+ thermal noise model. 

 

 

µ̂  ν̂  2ˆ Gσ  

80.996 0.98159 5.3834*10-13 

 
Table 1.23 - Parameters estimate of  K+ thermal noise model. 

 

 Unfortunately the fitting is not good, and then we decided to change the parameter 

estimation method. Instead of using the method of moments, we minimized the square 

difference between histogram f(r) and K+ thermal noise curve pr(r), that is 

 

  ( ) ( )( )2
i r i

i
f r p r= −∑

θ
θ argmin  (1.31) 

 

where  is the vector of parameters to estimate (θ µ ,ν , 2
Gσ ) and ri (i=1,2,3,..) the vector of 

data amplitude. Even with this new estimation method, the K+thermal noise model fails. 

 On these data we tested also the Generalized Compound (GC) model. The GC model 

has been recently proposed for very high resolution data in [Ana99] as an alternative to the 
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compound-Gaussian model. In the Generalized compound model the Gaussianity hypothesis 

on the speckle is relaxed and the Generalized Gamma (GΓ) distribution is proposed for both 

speckle and texture. The expression of the GΓ is: 

 

  ( ) ( )

1

; , , exp
b bb r rp r a b

a a a

ν

ν
ν

−     =    Γ     
−            r≥0 (1.32) 

 

where a is scale parameter, ν is the shape parameter and b is the “power” parameter. This 

PDF is more general than Rayleigh and Gamma PDFs. The GΓ PDF can be used to describe 

distributions with long tails. The standard models for the clutter as Rayleigh (b=2, ν=1), 

lognormal (b,ν→0,∞), Weibull (ν=1), and the Gamma (b=1) are special case of GΓ PDF. 

 In this case the distribution of amplitude, conditioned to the texture, is given by: 

 

  ( ) ( )
1 1 11

1

1

exp
b b

G
b r rf r s

s s s

ν

ν

−

Γ

    =    Γ     
−          x≥0 (1.33) 

 

s is the component of modulation ( )τ  which is GΓ distributed: 

 

  ( ) ( )
2 2 21

2
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b b
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−
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The PDF of clutter r is GC distributed: 

 

  ( ) ( ) ( )dssfsrfrf GGGC ∫
∞

ΓΓ=
0

 (1.35) 

 

If we replace (1.33) and (1.34) in (1.35) we obtain the integral representation of GC PDF: 
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∫  (1.36) 

 72



 
  

 

In general, the integral that appears in the eq. (1.36) does not present a closed form. A closed 

form exists only if b b1 2 b= =  and the resulting PDF is called GC-GK: 

 

  ( ) ( ) ( )

( )1 2

2 1

/ 2 1 / 2

1 2
1 2

2; , , , 2
b b
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b r ra b K

a a

ν ν
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−f r
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       r≥0 (1.37) 

 

where  is the modified Bessel function. The moments for the GC-GK PDF are given by 

the following expression: 

( )K rν

 

  
( ) ( )

1 2

1 2

k k

k k
b bE r a

ν ν

ν ν

  Γ + Γ +  
    =  Γ Γ



  (1.38) 

 

 To estimate the parameters characterizing the model, we used the same method applied 

for the Generalized K model with generalized Gamma distributed texture, that is we 

minimized the functional: 
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where mn(k) is the normalized theoretical moment of order n 
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 (1.40) 

 

while  are the moments experimentally estimated. ( )km̂

 The parameter a is then given by: 
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 The results of the GC-GK model are reported in Figs. 1.95 and 1.96. It is apparent that 

the fitting is not good. 
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Figure 1.95 - PDF of clutter amplitude. 
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Figure 1.96 - Normalized moments. 

 

In the Table 1.24 we report the parameters estimated for the GC model. 

 

â  b̂  1ν̂  2ν̂  

0.078138 0.76288 6.127 5.9443 

 

Table 1.24 - Parameters values for the GC-GK model. 

 

 The last model we tested on the data is the Inverse Gamma (IG). It is a particular case of 

the Compound-Gaussian model, where the texture (τ) PDF is the Inverse Gamma (as a 

consequence 1/τ is Gamma distributed). The expression of the Inverse Gamma PDF is 

[Bal05]: 

 

  ( ) ( )
( )

1
11; ,f eα βτ

τ ατ α β τ
β α

−
− +=

Γ
 (1.42) 

 

where α is the shape parameter and β is the scale parameter. 
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If the speckle amplitude is Rayleigh distributed, the amplitude of clutter is distributed such 

that: 
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If we define 
2 1rx β
βτ
+

= , and replace it in eq. (1.43) we obtain the IGT (Inverse Gamma 

texture) PDF: 
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The expression for the moments is 
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By applying the substitution 2k rβ=  and the identities: 
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we obtain the following closed form expression: 
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Eq. (1.47) converges if and only if α ≥ n/2. 
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 The results relating to this model are shown in Fig. 1.97 where the data histogram is 

compared to the IGT PDF. To estimate α and β we used the MoM. The parameter estimates 

are α=1.2498 and β=0.016672. The fitting is not good. 
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Figure 1.97 - PDF of clutter amplitude. 
 

 

 1.2.2 Texture and speckle estimation and statistical analysis 
 After testing some statistical model on the overall amplitude of the clutter from dense 

vegetated areas, we performed a statistical analysis on speckle and texture separately. First we 

considered the data of file HB06202 where each tested model failed in modeling the 

amplitude histogram. Supposing that the clutter process is a compound process 

( ) ( ) ( )r n n x nτ= , texture and speckle have very different correlation times and the speckle is 

a unitary power process, we estimated them from the amplitude data. Due to the physical 

nature of the texture that takes into account the space variations of the local power of the 

image, it can be considered as a long time (or space) correlated process. Then the texture can 

be supposed constant (or very slowly varying) on small patches of the image and it can be 

estimated from the amplitude data as [Gin00]  
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where Nr  and Ncr are the number of samples in range and cross-range respectively used for 

the estimation, then the dimensions (in pixels) of each patch. In performing this estimation we 

fixed Nr=Ncr=10, without overlap. It is apparent from eq. (1.48) that every 100 samples of 

clutter amplitude we obtained only 1 texture sample. The dimension of the square window has 

been chosen as a compromise between accuracy of the texture estimate and variation time of 

the texture itself. A larger window could improve the texture estimate only if the texture 

would be constant in a larger space interval, otherwise the estimation calculates only an 

average texture. 

 The speckle can be estimated by normalizing the data amplitude with respect to the 

estimated texture, thus 

 

  ( , )ˆ( , )
ˆ( , )

r k mx k m
i jτ

=       [ , ( 1)c ck iN i N ]∈ + , [ , ( 1)cr crm jN j N ]∈ +  (1.49) 

 

 The speckle of file HB06202 is plotted in Fig. 1.98. It is a noise-like process even if, 

somewhere, it is possible to see some residue of the texture structure.  

 On the speckle we performed a statistical analysis very similar to that carried out on the 

amplitude. We used same models, Weibull, Rayleigh, K, GK, LN and LNT with same 

notation even if LNT, as instance, refers to Gaussian compound model with Log-normal 

texture and here we are analyzing the speckle. In this context we are interested in the 

statistical model, not in its physical nature. The results are shown in Figs. 1.99 and 1.100. The 

best fitting has been obtained with K and LNT PDFs, as verified in the Tables 1.25 and 1.26 

where we report the results of KS and Kuiper tests. 

 The plot of the GK PDF shows a strange behavior that is due to a numerical problem in 

the integration of eq. (1.14). 
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Figure 1.98 - Image of speckle estimated by using matrixes 10x10 without overlap. 
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Figure 1.99 - PDF of speckle estimated with matrix 10x10. 
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Figure 1.100 - Normalized moments of speckle estimated with matrix 10x10. 

 

 

 
 

1784x1472 W LN K GK R LNT 
Prob 100 % 94 % 100 % 8 % 100 % 100 % 

d 2.71*10-2 7.40*10-2 2.25*10-2 17.70*10-2 4.30*10-2 1.76*10-2 
 

Table 1.25 - Results of KS test on the speckle (matrix 10x10). 
 

1784x1472 W LN K GK R LNT 
Prob 100 % 90 % 100 % 36 % 100 % 100 % 

d 2.92*10-2 12.82*10-2 2.22*10-2 18.14*10-2 6.73*10-2 2.27*10-2 
 

Table 1.26 - Results of Kuiper test on the speckle (matrix 10x10). 
 

Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂        µ̂  

GK 
ˆν       µ̂         b̂  

R 
2σ̂  

LNT 
2σ̂         m̂

(1784x1472) 1.71     0.96 0.74       0.55 2.86    0.50 10.98    0.18    0.59 0.97 0.27      0.44 
 

Table 1.27 Parameters estimate for the speckle (matrix 10x10). 
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 In the Table 1.27 we report the characteristic parameters values. Clearly the speckle is 

not Gaussian distributed. 

 In Figure 1.11 we report the image of despeckled texture (window 10x10 without 

overlap). The structure of the wood is evident.  

 

 
Figure 1.101 - Image of texture estimated with a 10x10 window without overlap.  

 

 We performed same estimation using also a 20-dimensional square window (instead of 

a 10-dimensional window), without overlap. The following figures report the obtained results. 

 From Figure 1.102, representing the estimated speckle, we can observe that there is 

again some residue of the texture, more evident than in Fig. 1.98. 
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Figure 1.102 - Image of speckle estimated by using matrices of 20x20 elements without overlap. 
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Figure 1.103 - PDF of speckle estimated with matrix 20x20 without overlap. 
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Figure 1.104 - Normalized moments of speckle estimated with matrix 20x20 without overlap 

 

 
Figure 1.105 - Image of texture estimated with matrix 20x20 without overlap.  
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Size of patch Weibull 
ĉ           b  ˆ

Lognormal 
δ̂        σ̂  

K 
ν̂        µ̂  

GK 
ˆν       µ̂         b̂  

R 
2σ̂  

LNT 
2σ̂         m̂

(1784x1472) 1.49     0.91 0.68       0.62 1.74    0.50 69.25   1.48*10-10  

0.16 
0.93 0.57      0.38 

 

Table 1.28 - Parameters estimates for the speckle (matrices 20x20 without overlap). 
 

1784x1472 W LN K GK R LNT 
Prob 100 % 98 % 100 % 99 % 89 % 100 % 

d 1.96*10-2 6.64*10-2 1.10*10-2 6.10*10-2 8.03*10-2 2.15*10-2 
 

Table 1.29 - Results of KS test on the speckle (matrices 20x20 without overlap). 
 

1784x1472 W LN K GK R LNT 
Prob 100 % 98 % 100 % 100 % 94 % 100 % 

d 2.39*10-2 11.03*10-2 1.46*10-2 7.31*10-2 12.20*10-2 2.66*10-2 
 

Table 1.30 - Results of Kuiper test on the speckle (matrixes 20x20 without overlap). 
 

 

 From Figure 1.103 we can observe that Weibull, K and LNT models are close to the 

histogram. The best fitting is given by K and LNT models. The results in Tables 1.29 and 

1.30 of KS and Kuiper tests are in good agreement with the figure of PDFs. 

 We completed the statistical analysis for this file by estimating the histogram of the 

texture. To dispose of much more data, we decided to estimate again the texture using a 20-

dimensional matrix but with an overlap of 95% in range and 95% in cross range. The new 

texture image is reported in Fig. 1.106. Fig. 1.107 and Fig. 1.108 show respectively the 

histogram and the estimated cumulative distribution function (CDF) of the texture of Fig. 

1.106. It is evident that, after a peak for low values, the histogram drops almost linearly in the 

range [50, 560] then abruptly decreases for higher texture values. 
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Figure 1.106 - Texture image of HB06202 file (matrices 20x20, overlap 95%) 
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Figure 1.107 - Texture histogram of HB06202 file (20x20, overlap 95%). 
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Figure 1.108 Texture CDF of HB06202 file (matrixes 20x20, overlap 95%). 

 

1.2.3 Statistic analysis of the patches of HB06202 file 
 We repeated similar analysis on three patches of the figures, for speckle and texture. For 

estimating the speckle we applied a 20x20 matrix without overlap and for estimating the 

texture the same window but with and overlap of 95%.  

 The two patches in Figs. 1.109 and 1.115 depict shadowed areas, the patch in Fig. 1.121 

and almost homogeneous wood. 

 The results of the statistical analysis are in the following figures. The texture histograms 

of the shadowed areas show a high peak for very low values of the texture and then an almost 

linearly decreasing tail for higher values. The behavior of the CDFs in Fig. 1.114 and 1.120 

shows that 80 % of the texture values are lower than 20 (steep slope in the range [0, 20] 

followed by smooth rise in the range [20, 700]). This trend is due to the low RCS of the 

shadowed areas.  

 On the contrary, Figs. 1.123 and 1.124, relating to the wood area, are similar to those of 

the overall image. 
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 The speckle of the shadowed areas exhibits a good fitting with K, LNT and GK models 

but it is not spiky. As a matter of fact, the shape parameter of the K distribution, that is a 

measure of the non-Gaussianity, is greater than 2 (for spiky speckle ˆ 2ν < ).  

 Actually, we expected to find only thermal noise in the shadowed areas, that is, almost 

delta distributed texture and Rayleigh distributed speckle. The deviations from this model are 

maybe due to the presence of double-bounce scattering from the trees and also some white 

pixels in the patches originated by tree scattering. 

 

 

 
Figure 1.109 - Image of the patch (1100,1400)x(1,800). 
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Figure 1.110 - PDF of the speckle for the patch (1100,1400)x(1,800). 
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Figure 1.111 - Normalized moments for the speckle of the patch (1100,1400)x(1,800). 
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Figure 1.112 - Texture of the patch (1100,1400)x(1,800). 
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Figure 1.113 - Texture PDF for the patch (1100,1400)x(1,800) 
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Figure 1.114 - Texture CDF for the patch (1100,1400)x(1,800) 

 

 
Figure 1.115 - Image of the patch (700,1000)x(800,1400). 
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Figure 1.116 - PDF of the speckle for the patch (700,1000)x(800,1400). 
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Figure 1.117 - Normalized moments of the speckle of the patch (700,1000)x(800,1400). 
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Figure 1.118 - Texture image of the patch (700,1000)x(800,1400). 
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Figure 1.119 - Texture PDF of the patch (700,1000)x(800,1400)  
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Figure 1.120 - Texture CDF of the patch (700,1000)x(800,1400) 

 

 
Figure 1.121 - Image of the patch (1,600)x(1,1478). 
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Figure 1.122 - PDF of the speckle of the patch (1,600)x(1,1478) 
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Figure 1.123 - Normalized moments for the speckle of the patch (1,600)x(1,1478) 
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Figure 1.124 - Texture image of the patch (1,600)x(1,1478). 
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Figure 1.125 - Texture PDF of the patch (1,600)x(1,1478)  
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Figure 1.126 - Texture CDF of the patch (1,600)x(1,1478)  

 

 

Patch size W 
ĉ          b  ˆ

LN 
δ̂       σ̂  

K 
ν̂      µ̂  

GK 
ˆν       µ̂        b̂  

R 
2σ̂  

LNT 
2σ̂     m̂

(1100,1400)x 
(800,1400) 

1.80   0.97 0.75    0.53 2.86   0.50 79.25  2.65*10-6  0.26 0.98 0.18 0.46 

(700,1000)x(1,1478) 1.67   0.95 0.73    0.55 2.86   0.50 69.81  1.74*10-8   0.19 0.96 0.31 0.43 
(1,600)x(1,1478) 1.45   0.90 0.67    0.63 1.56   0.50 32.36  2.60*10-6   0.22 0.93 0.63 0.36 

 

Table 1.31 Parameters of models utilized for the speckle analysis of HB06202 file. 

 

 Following the method previously described for the dense vegetation file, we analyzed 

also speckle and texture of the grass field file HB06171, looking for another confirm of the 

Gaussian-compound model.  

 In the following figures we report the speckle image, PDF and moments for estimated 

speckle and texture, relating to the whole image of the HB06171 file. The speckle histogram 

show a good fitting with the Weibull model whose estimated shape parameter is c=1.7 

(almost Rayleigh distributed) and the texture histogram with generalized Gamma PDF. These 
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results are in good agreement with those obtained for the clutter amplitude model. The 

compound-Gaussian model is a good candidate to fit the grass field clutter. 
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Figure 1.127 - Image of the speckle of file HB06171. 
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Figure 1.128 - PDF of speckle for the file HB06171 (matrices 20x20 without overlap) 
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Figure 1.129 - Normalized moments of the speckle for the file HB06171. 
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Figure 1.130 - Image of the texture of the file HB06171. 
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Figure 1.131 - PDF of texture of the file HB06171 
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Figure 1.132 - Normalized moments of the texture for the file HB06171. 

 

Image size W 
ĉ          b  ˆ

LN 
δ̂       σ̂  

K 
ν̂      µ̂  

GK 
ˆν       µ̂        b̂  

R 
2σ̂  

LNT 
2σ̂     m̂

(1784x1472) 1.70   0.96 0.74    0.55 2.86   0.50 0.51     0.75     2.64 0.97 0.28   0.44 
 

Table 1.32 - Parameter values for the speckle of the file HB06171. 

 

 

Image size Γ 
µ̂         ˆν  

GΓ 
ˆν       µ̂        b̂  

LN 
δ̂    σ̂  

(1784x1472) 17.74     15.28 1.05     294.88     2.77 264.85   0.22 
 

Table 1.33 Parameters of the texture for the file HB06171. 

 

 

1.2.4 Conclusions 
 We performed a statistical analysis on clutter amplitude, texture and speckle scattered 

by grass fields and woods. Based on our results we can conclude that the compound-Gaussian 

model presents a good fitting with the data relating to the grass. These results are confirmed 
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by amplitude and both texture and speckle histograms. The speckle is Rayleigh distributed 

and, the texture Gamma, GΓ or LN distributed.  

 On the contrary the compound-Gaussian model fails in fitting the wood clutter. None of 

the tested model shows a good agreement with the amplitude and texture histograms, and the 

speckle is clearly heavy tailed (non-Rayleigh distributed).  
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CCHHAAPPTTEERR  22  

FFRREEQQUUEENNCCYY  AANNAALLYYSSIISS  

  
 In this chapter we show the results of the frequency analysis carried out on the MSTAR 

data. The power spectral density (PSD) of the data has been estimated by means of the 

weighted periodogram, defined as: 
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where x(n) is the nth element of the data vector x and w is the weighting window. In our case 

N=2048 and w is a rectangular window with unitary amplitude. 

 The autocorrelation function can be estimated indirectly, as the inverse Fourier 

transform of the PSD, or directly from the data, as: 
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where m is the time or space lag and the symbol * stands for the complex conjugate. 

 Similarly, we can estimate the autocovariance function as: 
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where  is the estimated mean value of data vector x. 
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2.1 Frequency analysis of grass field clutter 

2.1.1 HB06171 File 
 
 We consider first the image of Figure 1.1, showing a homogeneous grass field, where 

there is not shadowing effect. We estimated on the amplitude, texture and speckle of the 

overall image both autocovariance and autocorrelation functions, then we repeated same 

analysis on the patch (893,1784)x(1,1472) of Figure 1.9. 

 To estimate the correlations and the covariances we applied eqs. (2.2) and (2.3) 

respectively first on each row (cross-range) and then on each column (range) of the image. To 

obtain the final correlation and autocovariance function in range and cross-range we averaged 

all the estimated functions in range (rows) and in cross-range (columns), that is 
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where K is the number of rows or columns of the image and ˆ
X kR ,  are the estimated 

correlation and covariance relating to the kth row or column.  

ˆ
X kC

 In the figures 2.1-2.12 we report all the results we obtained. Figures 2.1, 2.2 and 2.3 

represent the autocovariance for speckle, texture and data amplitude respectively. We can 

observe that the speckle and data amplitude are almost white (delta-correlated), texture 

autocovariance presents a smoother slope than speckle and amplitude. Figures 2.4, 2.5 and 2.6 

relate to the cross-range direction and they show a trend similar to that of the range direction. 

We notice that, generally, along the range direction, the decreasing of the covariance is faster 

that along the cross-range direction. This is due to the decorrelation effect introduced by the 

shadow that is heavier in the illumination direction than in the orthogonal direction.  

 In the figures the autocovariance functions have been normalized with respect to their 

maximum value. 
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Figure 2.1 - Range autocovariance of the speckle for the whole image (1784x1472). 
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Figure 2.2 - Range autocovariance in range of texture for the whole image (1784x1472). 

 104



 
  

-0.2

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

am
pl

itu
de

 a
ut

oc
ov

ar
ia

nc
e

meters  
Figure 2.3 - Range autocovariance of the amplitude for the whole image (1784x1472). 
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Figure 2.4 - Cross-range autocovariance of the speckle for the whole image (1784x1472). 
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Figure 2.5 - Cross-range autocovariance of texture for the whole image (1784x1472). 
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Figure 2.6 - Cross-range autocovariance of the amplitude for the overall image (1784x1472). 
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Figure 2.7 - Range autocovariance of the speckle for the patch (893,1784)x(1,1472). 
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Figure 2.8 - Range autocovariance of the texture for the patch (893,1784)x(1,1472). 
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Figure 2.9 - Range autocovariance of the amplitude for the patch (893,1784)x(1,1472). 
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Figure 2.10 - Cross-range autocovariance of the speckle for the patch (893,1784)x(1,1472). 
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Figure 2.11 - Cross-range autocovariance of the texture for the patch (893,1784)x(1,1472). 
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Figure 2.12 - Cross-range autocovariance of the amplitude for the patch (893,1784)x(1,1472). 
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 To complete the covariance analysis we estimated as well the 2-dimensional function of 

the texture as: 

 

  ( )( )
1 1

0 0

1 ˆˆ ˆ( , ) ( , ) ( , )
M m L l

n l
C m k n l n m l k

ML ττ η τ η
− − − −

= =

= − + τ̂+ −  ∑ ∑  (2.4) 

 

In Figures 2.13 and 2.14 we show the 2-dimensional covariance function of clutter amplitude 

as 3D-plot and as a map. The colormap is reported in the figures as a reference. Again, it is 

apparent that the decorrelation length is greater in cross-range than in range direction. 
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Figure 2.13 Texture three–dimensional autocovariance function for total image of HB06171 file. 
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Figure 2.14 Texture three–dimensional autocovariance function for total image of HB06171 file. 

 

 To calculate the periodogram of the data we applied eq. (2.1) to each row and column of 

the image, then, as for the covariance function, we averaged on all the rows and the columns 

and we obtained an averaged periodogram for both range and cross-range directions.  

 In figures 2.15 and 2.16 we report the mean periodogram in range and cross-range 

respectively for the whole image, in figures 2.17 and 2.18 for the patch (893,1784)x(1,1472). 

The behavior of the periodogram, in both directions and in the whole image and the patches, 

is very similar. It presents a peak at the null frequency due to the DC component of the data, 

then it decreases almost linearly in all the frequency range. 

 Figure 2.15 shows two spurious frequency lines at f=0.1 and 0.27. They are maybe due 

to some EM interference. 
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Figure 2.15 – Mean periodogram in range for the whole image (1784x1472). 
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Figure 2.16 – Mean periodogram in cross-range for the overall image (1784x1472). 
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Figure 2.17 - Mean periodogram in range for the patch (893,1784)x(1,1472). 
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Figure 2.18 - Mean periodogram in cross-range for the patch (893,1784)x(1,1472). 
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2.2 Frequency analysis of the clutter of dense vegetated areas 

2.2.1 Periodogram of file HB06202 
 

 In this section we consider the file HB06202 (Figure 1.91). We report the results of 

frequency analysis, in particular the average periodogram calculated in range and cross-range 

direction in semilog scale. We report also the autocorrelation and autocovariance functions of 

data, speckle and texture. The autocovariance function has been calculated for both directions 

(range and cross-range) for the overall image and for three patches.  

 Figure 2.21 reports the average periodogram calculated in range for the whole image 

while Figure 2.22 reports the periodogram in cross-range direction. 

 The first patch that we analyzed is the (1100,1400)x(1,800), highlighted in Figure 1.107. 

The behavior of the average periodogram in range and cross-range is reported in figures 2.23 

and 2.24 respectively. The second patch has dimensions (700,1000)x(800,1400) (Figure 

1.115) and, as the first, relates to a shadowed area. Conversely, last patch we considered 

(1,600)x(1,1478) covers a region with dense vegetation as evident in Figure 1.121. The 

periodograms are plotted in Figs. 2.25-2.28. 

 There are not significant differences in range and cross-range directions. 
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Figure 2.21 - Average periodogram in range for the whole image (1784x1478). 
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Figure 2.22 - Average periodogram in cross-range for the whole image (1784x1478). 
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Figure 2.23 - Average periodogram in range for the patch (1100,1400)x(1,800). 
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Figure 2.24 - Average periodogram in cross-range for the patch (1100,1400)x(1,800). 
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Figure 2.25 - Average periodogram in range for the patch (700,1000)x(800,1400). 
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Figure 2.26 - Average periodogram in cross-range for the patch (700,1000)x(800,1400). 
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Figure 2.27 - Average periodogram in range for the patch (1,600)x(1,1478). 
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Figure 2.28 - Average periodogram in cross- range for the patch (1,600)x(1,1478). 

 

2.2.2 Correlations of HB06202 file: wood and trees 
 

 In the following figures we report the estimated autocovariances for the whole image 

and for the patch (893,1784)x(1,1472), in range and cross-range directions. 

 By observing figures 2.31 and 2.35 of speckle autocovariance we can notice that the 

covariance is zero already after 2.5-3 m both in range and in cross-range. Moreover, the 

mainlobe of the covariance function seems to be larger than in the case of grass field (see 

figures 2.1 and 2.4). This effect could be due to the presence of a texture residual contribution 

in the estimated speckle. 

 The amplitude covariance in Figure 2.34 and 2.37 is mainly influenced by the 

covariance of the speckle, and then it presents a fast drop to zero. The texture covariance, on 

the contrary, shows a slow decreasing, particularly in cross-range direction (see Fig. 2.36). 

We repeated same analysis on other files and patches; we obtained similar results even if, 

often, the decreasing of the texture covariance in cross-range is faster than in Fig. 2.36. The 

behavior of Fig. 2.36 could be due to a particular structure of the wood in the image of file 

HB06202. 
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 In Figures 2.38-2.43 we report the 3D-covariance of the texture, estimated for the whole 

image (figs. 2.38 and 2.39), for the patch (700, 1000)x(800,1400) (figs- 2.40 and 2.41) and for 

the patch (1,600)x(1,1478) (Figs. 2.42 and 2.43). The long covariance length of the texture in 

cross-range direction is well evident in Fig. 2.38. 
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Figure 2.31 - Autocovariance in range of the speckle for the whole image (1784x1478). 
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Figure 2.32 - Autocovariance in range of the texture for the whole image (1784x1478). 
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Figure 2.34 - Autocovariance in range of the data amplitude for the whole image (1784x1478). 
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Figure 2.35 - Autocovariance in cross-range of the speckle for the whole image (1784x1478). 
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Figure 2.36 Autocovariance in cross-range of the texture for the whole image (1784x1478). 
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Figure 2.37 Autocovariance in cross-range of the data amplitude for the whole image (1784x1478). 
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Figure 2.38 - Texture three–dimensional autocovariance function for total image of the file HB06202. 
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Figure 2.39 - Texture three–dimensional autocovariance function for total image of the file HB06202. 
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Figure 2.40 - Texture three–dimensional autocovariance function for the  patch (700,1000)x(800,1400). 
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Figure 2.41 - Texture three–dimensional autocovariance function for the patch (700,1000)x(800,1400). 
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Figure 2.42 - Texture three–dimensional autocovariance function for the patch (1,600)x(1,1478). 
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Figure 2.43 - Texture three–dimensional autocovariance function for the patch (1,600)x(1,1478). 

 

2.3 Theoretical texture correlation models 

 As shown in the previous section, the speckle is almost white in all the images. The 

residual correlation is manly due to the oversampling (the pixel size is on the order on 0.2 m, 

the system resolution is on the order of 0.3 m). On the contrary, the texture is spatially 

correlated in both range and cross-range directions from the underlying nature of the terrain 

and vegetation illuminated by the radar.  

 In [Pos93] the author presents 3 different models for the autocovariance coefficient of 

the texture. In the first, referred to as Pure Gaussian (PG), the spatial autocovariance of the 

texture is assumed to have a two-dimensional Gaussian shape. Thus:  

 

  
2 2

1 2 1 2
1 2 1 2 0 0

0 0

( , , , ; , ) expPG
x x y yC x x y y x y

x y

    − − = − −   
     

 (2.5) 
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where 1x , 2x ,  and  are the spatial positions of the texture,  and  are the 

decorrelation lengths of the backscattered field, takes as the e

1y 2y 0x 0y
-1 points of the assumed two-

dimensional Gaussian shaped autocovariance function.  

 In the second texture model, the spatial autocovariance is assumed to have a two-

dimensional Gaussian shape, modified by the presence of a range cosine factor, the purpose of 

which is to produce negative power covariances (shadows) in the range direction, a 

phenomenon particular evident in tree images. This model, called Shadowed Gaussian (SG) 

introduces another parameter, the range shadowing length 0y′ . The SG model is given by: 

 
2 2

' 01 2 1 2 1 2
1 2 1 2 0 0 0 '

0 0 0 0

( , , , ; , , ) exp cosSG
yx x y y y yC x x y y x y y

x y y y

        − − − = − − ⋅       
        

 (2.6) 

 

 When 0 0y′y  goes to zero, the SG model is identical to PG. 

 In the third model we considered, the spatial autocovariance of the texture is assumed to 

have a two-dimensional exponential shape modified by the presence of the same range cosine 

term as the SG model. The exponential form for the texture autocovariance yields a slower 

decay in the covariance than the Gaussian form. This model is called Shadowed Exponential 

(SE): 

 

2 2
' 01 2 1 2 1 2

1 2 1 2 0 0 0 '
0 0 0 0

( , , , ; , , ) exp cosSE
yx x y y y yC x x y y x y y

x y y y

        − − − = − + ⋅            


  

 (2.7) 

 

 The texture autocovariance function for the Pure Gaussian case is separable, and can be 

written as the product of a Gaussian in cross-range and a Gaussian in range direction. The 

Shadowed Gaussian shape is separable as well. The Shadowed exponential is not separable. 

2.4 Results 

 We tested all the three theoretical models of the texture covariance on our data. To 

estimate the parameters 0x ,  and 0y 0y′  we used the central row C m  and column of the 

covariance matrix , normalized with respect to the maximum value C(0,0), estimated 

( ,0)

(0,C )k
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as in eq. (2.). So doing we separated the estimation along the two directions, range and cross-

range. In detail, to estimate the parameter 0x  of the PG and SG models, we fixed  and 

we minimized the mean square error between the theoretical and the estimated covariance of 

the central row , that is 

1y y= 2

( ,0)C m

x̂
(0

C m 

0

(0
(0

ŷ

0

0
0 0 ,

ˆ ˆ, m
y y

y y )′ = −

x̂
(0

C m

0y′

 

  
0

222 1

0
2 0

( ,0) ( )min exp
,0)

Nmc

x m Nmc

x m
C x

−

=−

       = − −         
∑  (2.8) 

 

where Nmc is the number of column in the texture covariance matrix, and x(m) is the lag 

position with respect to the axis origin along the cross-range direction.  

 To estimate y  for the PG model we pose 
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222 1
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∑  (2.9) 

 

where Nmr is the number of column in the texture covariance matrix, and y(k) is the lag 

position with respect to the axis origin along the range direction. 

 To estimate y  and  for the SG model we pose 0y′
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 To estimate the parameter 0x  for the SE model we have: 
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and for  and  0y
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∑  (2.12) 

 

 We report here the results of our analysis performed on three patches of the file 

HB06195 representing a wood, a grass field and shadow respectively. In Figure 2.43-2.60 we 

plot the theoretical models compared to the estimated texture covariance and in Tables 2.1-2.3 

we report the values of the estimated parameters and the minimum mean square error 

(MMSE) for each model. In all the analyzed cases the best fitting is provided by the 

shadowed exponential model. 

 

-0.2

0

0.2

0.4

0.6

0.8

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

Estim.

PG

A
ut

oc
ov

ar
ia

nc
e

meters  
Figure 2.43 – Texture covariance, grass field, range direction. 
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Figure 2.44 – Texture covariance, grass field, cross-range direction. 
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Figure 2.45 – Texture covariance, grass field, range direction. 
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Figure 2.46 – Texture covariance, grass field, cross-range direction. 
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Figure 2.47 – Texture covariance, grass field, range direction. 
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Figure 2.48 – Texture covariance, grass field, cross-range direction. 

 

 

Model 0x̂  0ŷ  '
0ŷ  MMSE (cross-range) MMSE (range) 

PG  2.6 m  2.6 m - 5.5·10-3 8.3·10-3 

SG 2.6 m 2.6 m 10.4 m 5.5·10-3 8.3·10-3 

SE 2.6 m 2.6 m 40 m 2.4·10-3 6.6·10-3 
 

Table 2.1 – Estimated parameters and MMSE, grass field. 
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Figure 2.49 – Texture covariance, wood and trees, range direction. 
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Figure 2.50 – Texture covariance, wood and trees, cross-range direction. 
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Figure 2.51 – Texture covariance, wood and trees, range direction. 
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Figure 2.52 – Texture covariance, wood and trees, cross-range direction. 
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Figure 2.53 – Texture covariance, wood and trees, range direction. 
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Figure 2.54 – Texture covariance, wood and trees, cross-range direction. 
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Model 0x̂  0ŷ  '
0ŷ  MMSE cross-range MMSE range 

PG 5.6 m 4.0 m - 2.9·10-3 7.0·10-3 

SG 5.6 m 6.0 m 4.4 m 2.9·10-3 6.7·10-3 

SE 5.6 m 7.2 m 5.2 m 9.0·10-4 4.8·10-3 
 

Table 2.2 – Estimated parameters and MMSE, wood and trees. 
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Figure 2.55 – Texture covariance, wood and trees, range direction, file HB06192 
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Figure 2.56 – Texture covariance, wood and trees, cross-range direction, file HB06192. 
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Figure 2.57 – Texture covariance, wood and trees, range direction, file HB06192. 
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Figure 2.58 – Texture covariance, wood and trees, cross-range direction, file HB06192. 
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Figure 2.59 – Texture covariance, wood and trees, range direction, file HB06192. 
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Figure 2.60 – Texture covariance, wood and trees, cross-range direction, file HB06192. 

 
 

Model 0x̂  0ŷ  '
0ŷ  MMSE cross-range MMSE range 

PG 8.0 m 5.2 m - 2.5·10-3 4.0·10-3 

SG 8.0 m 5.2 m 19.2 m 2.5·10-3 4.0·10-3 

SE 8.8 m 7.2 m 7.6 m 1.2·10-3 2.5·10-3 
 

Table 2.3 – Estimated parameters and MMSE, wood and trees, file HB06192. 
 

 

2.5 Conclusions 

 

 Based on our results, we can conclude that, both for trees and grass field, the speckle is 

an almost-white process. The residual correlation is mainly due to the system oversampling. 

The covariance of the amplitude is mostly influenced by the covariance of the speckle, then 

the amplitude as well is an almost-white process. Conversely, the texture, that takes into 

account the structure of the vegetated areas, presents a slowing decreasing covariance, 

especially in cross-range direction and in dense vegetated areas. To deepen our analysis, we 
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tested three theoretical models for the texture covariance, the Pure Gaussian, the Shadowed 

Gaussian and the Shadowed Exponential. The best results have been provided by the 

shadowed exponential model both on trees and grass and in both range and cross-range 

directions. For the grass field the correlation length, as defined for the SE model, is on the 

order of 3 m in range and cross-range, for the wood on the order of 7 m. 
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CCHHAAPPTTEERR  33  
EEXXTTEENNDDEEDD  SSPPEECCKKLLEE  AANNAALLYYSSIISS    

 

3.1 Introduction 

In this chapter the statistical analysis of the non Gaussian speckle regime is extended, 

to get a flavor of the extent to and of the grade with which long tailed deviations from the 

classical Gaussian regime are found in high resolution SAR images of natural landscape 

areas. This analysis has been supported by four real data sets; each one has different 

characteristics like the presence or the absence of fields, forests, urban agglomerates and 

artificial elements (roads, guard rails, pylons). Moreover, the SAR sensors that acquired the 

images have different operating conditions: resolution, band, polarization, and illumination 

angle.  

The approach used for the analysis is the same for each set: the first step consists in a 

visual inspection of the scene to understand which are the areas including nuisance elements 

like guard rails or pilons, and which are the areas containing interesting areas of terrain clutter 

(fields or forests). In a second time we applied the estimation algorithms of the speckle model 

parameters, and tests of the goodness of fit.  

There are two classes of estimators and tests: the first class is used to investigate the 

speckle fluctuactions to find the presence of long tailed speckle, the second class, which 

includes SNR estimation and a phase uniformity test, is used to confirm the results of the first 

class. In fact, some results could be degraded by a low SNR, or in a second way, the speckle 

phase could be not uniform. The statistical model that we use for fitting neglects thermal 

noise, thus, when SNR is not high enough, we choose to drop the model estimates. Also, for 

the non Gaussian speckle regime on natural areas, in which we are interested, it is expected 

that a random walk with a low number of effective scatterers should produce uniform phase 

like in the classical Gaussian case [Oli98], i.e. a circular distribution of the complex data. If 

this does not happen, which may be due e.g. to a predominant scatterer, we drop the model 

estimates. Summarizing, the first class of results provide the information for the long tailed 

speckle research; however, if these results are not confirmed by positive results in the second 

class of tests, they loose significance and are dropped.  
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3.2 Statistical models 

For the speckle envelope model to be fit to the pixel amplitudes, the long-tailed 

Weibull distribution is assumed in this chapter. It accounts for deviations of the complex 

speckle pdf from the in phase and quadrature Gaussian components, i.e. Rayleigh envelope, 

shape parameter c less than 2 meaning long-tailed pdf (we recall that the Weibull pdf 

coincides with the Rayleigh pdf when c=2). The Weibull model is intended here to model the 

speckle fluctuations only; for non-uniform texture scenes, the texure variations could be 

wrongly attributed to the speckle. Because of this problem, investigating non-Gaussian 

speckle statistics in real data is a difficult task, since speckle fluctuations and texture 

variations mix together to give the overall data pdf. To examine the speckle pdf, decoupling 

from texture effects is necessary. To this aim, different procedures have been applied and 

tested. 

First, direct fitting of the Weibull speckle model over small possibly visually 

homogeneous [Oli98] image areas (patches) is considered. Unfortunately, arbitrarily small 

patches cannot be adopted to guarantee highly constant texture, since the too low number of 

pixels would result in inflated estimation variance. This method is expected to be intrinsically 

the less accurate, being sensible to possible texture variations inside the patch. Estimation of 

the scale and the shape parameters of the Weibull speckle pdf is carried out by classical 

statistical moments matching. Here, an overdetermined system of equations is used to fit the 

first 3 moments.  

Second, for a better texture decoupling fitting to the data is carried out of a generalized 

compound model of the overall pdf, accounting for both speckle and texture fluctuations. In 

particular, the classical Gamma model for the texture is assumed, while speckle envelope is 

assumed again to be long-tailed Weibull distributed. The overall pdf is a Gamma-Weibull 

model [Ana99], which is characterized by three parameters: a scale parameter, a Gamma 

shape parameter ν  coding the variability of texture (when ν →∞  the texture is constant), 

and the Weibull shape parameter c. Their joint estimation is carried out by overdetermined 

moment matching (first 5 moments) on large image data blocks, to accurately estimate the 

high-order moments [Ana99]. A possible expected problem from this procedure is sensivity to 

deviations of the texture from the classical Gamma model. 
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Finally, an approach that is expected to be more robust is to estimate the texture and 

then to compensate for it, by scaling the real data to bring the speckle to constant (unitary) 

power. After that, it is possible to proceed with speckle fitting.  

3.3 Phase uniformity test and SNR estimation  

To confirm the estimation results it is important to check our working hypotheses. The 

random walk model in which we are interested presumes an uniform distributed phase; also, 

neither the Weibull nor the Gamma-Weibull models account for thermal noise, thus we 

assume a high SNR. Thus, for each patch or block where we get parameter estimation we 

have to carry out a phase uniformity test and an SNR estimation. 

The first is carried out by a Kolmogorov-Smirnov test for the hypothesis of uniform 

phase. It processes the pixels phase and then provides a binary response: uniform distributed 

phase or not. To check the SNR, we have to estimate noise power first. This is done by 

assuming that where the speckle is very weak, only thermal noise is present in practice. 

Accordingly, with a mobile window filtering of the patch size on the intensity image we 

reduce the speckle variations. The minimum value found is assumed as the noise mean power 

( ). Then, by using the intensity values P of the patches, or by calculating the mean 

intensity P on blocks, we obtain SNR as follows: 

0N

0 0 0/ ( ) /sP N P N N SNR 1= + = + , where sP  

is the mean power of the signal component; thus, 0/ 1SNR P N= − . 

3.4 First data set 

The data are from the Neckar river valley, Germany, with agricultural and hilly forest 

areas, as shown in fig. 3.1. The data have been acquired by the AER-II X-Band SAR from 

FGAN, 1m range resolution, incidence angle (from the horizontal direction) 30 , VV-

polarization. 

o
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Figure 3.1 - SAR scene. 

 

It is possible to see a central field area, two lateral hilly forest areas and a bridge with three 

guard rails crossing the scene. 

In a first time, we applied a direct Weibull fitting to the amplitude data from patches 

with dimension 20x50 (1000 pixel) in range and in azimuth, respectively, and also 11x25 (275 

pixel). From a visual inspection we can infer that in some of these patches the texture is not 

highly constant, especially for the 20x50 case. However, further decreasing the patch 

dimension, and so the number of the pixels, reduces the statistical accuracy of the estimation 

for constant texture. So, using 20x50 and 11x25 pixels there are problems with texture, but 

less pixels do not return an accurate estimation (too high rmse and positively biased 

estimation).  

The following figure shows with a color code the results of the direct Weibull shape 

parameter estimation for each patch: blue color codes a bad fitting (sum of the percentage 

differences between theoretical and estimated moments larger than 15%), or a non uniform 
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distributed phase in the patch, while the others colors identify the shape parameter values as 

from the color bar. For the 20x50 case, the minimum detected shape parameter (maximum 

long-tailed deviation from the classical regime) is 0.8.  

 
Figure 3.2)3 - Shape parameter, patch: 20x50 (rg. x az.). 

 

However, it is noted how a lot of Non Gaussian speckle patches are detected where there are 

sudden and deep texture variations, thus in these patches it is expected that direct Weibull 

fitting estimates larger deviations from the Gaussian speckle regime than the reality. This is 

also substantiated by the following analysis using 11x25 patches: 

 

                                                 
3 Here and in the following maps, values of  are saturated to 2. ˆ 2c >
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Figure 3.3 - Shape parameter, patch: 11x25.  

 

We can see that the deviations from Gaussianity tends to reduce. This confirms that, if we 

want to get a precise estimation of the shape parameter c, we have to better discern the 

speckle from the texture.  

In this framework, we applied the Gamma-Weibull fitting on large blocks (160x400 in 

range and azimuth, respectively, with 50% overlap). This analysis provides the following 

shape parameter map. Again, the blue color codes bad fitting or non uniform phase. 
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Figure 3.4 - Shape parameter, block: 160x400. 

 

Excluding blocks containing the bridge, the maximum detected deviation from Gaussianity is 

now shape parameter c  equal to 1. Thus, the values of c  are quite similar to those found with 

critical Weibull only fitting, so we expect that the texture is not Gamma distributed. Non 

accurate modelling is also indicated by the several blue blocks. 

ˆ ˆ

In the third analysis method, we estimate the texture in the scene by moving window 

filtering with a box of the patch size, and then compensate the data for it. In particular, texture 

is estimated on patches of size 11x25 (rg. x az.). This size was choosen since from a visual 

inspection the typical size of tree canopy in the forest area is of this order. However, Fig. 3.5 

shows that where the texture is very variable, the compensation procedure leaves a residual 

texture.  
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Figure 3.5 - Scene after texture depuration.  

 

Using a smaller patch size for texture estimation would enhance the spatial accuracy of the 

estimates, but at the cost of inflated variance of the estimates. Thus, we keep compensation 

with 11x25 patches, and reduce the influence of possible residual texture on the subsequent 

Weibull parameter estimates by carrying out fitting again on large blocks. Doing this, the 

influence of possible local residual texture is subject to a diluition effect which makes the 

method robust. Using again the block size 160x400, the result is shown in Fig. 3.6. With this 

method the maximum detected long-tailed deviation from the Gaussian speckle regime is 

more limited than before, the minimum shape parameter being 1.44, for the block of index 

(10,3) in range and azimuth, respectively, which is in the forest area. 
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Figure 3.6 - Shape parameter, block: 160x400. 

 

The spatial extension of the estimated deviations from the Gaussian speckle regime 

has also been quantified by computing the histogram of the shape parameter values of the 

12x13=156 blocks, see Fig. 3.7.  

 148



 
  

0

2

4

6

8

10

12

14

1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2

%

SHAPE PARAMETER
 

Figure 3.7 - Histogram of . ĉ

 

Shape parameter values lower or equal to 1.5 appear in 3% of the image area, values lower or 

equal to 1.8 appear in 60% of the area (mostly in the forest area, see again Fig. 3.6). 

 To complete the analysis, we also checked if the SNR is high enough to neglect the 

thermal noise in the fitting model. The estimated SNR on the blocks is shown in Fig. 3.8. A 

high SNR is present in each block (minimum value is 22dB).  
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Figure 3.8 - SNR map in dB, block: 160x400. 

 

Also, we show the goodness of fit for the result of the most interesting block, that with rg. and 

az. index (10,3). To this aim, Fig. 3.9 shows a comparison between the theoretical moments 

of the model (for the estimated parameters) and the estimated moments from the real data. All 

moments are normalized to the moment of first order. 
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Figure 3.9 - Moment fitting for block (10,3). 

 

The first 5 moments of a Weibull-pdf with shape parameter 1.44 follow very well the 

experimental moments. Only the sixth moment is fitted with a slightly lower precision. Also, 

in Fig. 3.10 we compare the fitted Weibull pdf with the histogram of the compensated real 

data, again for block (10,3).  
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Figure 3.10 - Pdf fitting for block (10,3). 

 

It is apparent how the long-tailed pdf (Weibull with shape parameter 1.44) fits the data better 

than a Rayleigh pdf with same power. 

3.5 Second data set 

The data are from Oberpfaffenhofen, Germany, with grass, forest, and buildings areas, 

as shown in Fig. 3.11. The data have been acquired by the E-SAR L-Band SAR from DLR, 

1.5m range resolution, HH-, VV-, and HV-polarization.  
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Figure 3.11 - SAR scene (HH-pol.). 

 

Unfortunately this SAR scene contains a number of pixels lower than the first data set. 

Moreover, it is not possible to estimate the speckle Weibull shape parameter on blocks with 

size 160x400 as in the first data set, since these blocks would include a high number of 

nuisance elements like buildings or pilons. Thus, we now use blocks with size 40x100 in 

range and azimuth, respectively. After checking with a visual inspection the typical size of 

tree canopy, we mantained the patch size for texture estimation and compensation at the same 

value (11x25) as before.  

The following figure shows the map of the estimated shape parameters for the image 

with HH polarization. As usual, blue blocks are blocks where fitting is bad or phase is not 

uniform. 
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Figure 3.12 - Shape parameter, block: 40x100. 

 

Discarding results from blocks containing buildings, for the blocks including grass fields or 

forest only we find a minimum shape parameter 1.78 in block (3,1). Thus, the detected 

deviation from the Gaussian speckle regime on natural areas is less sensible than in the 

previous X-Band data set. This can be explained by the penetration of the L-band radiation in 

the layers of the vegetated areas. Altough SAR resolution is high, the presence of distributed 

scatterers along the elevation direction makes the number of effective scatterers high enough 

to generate a more classical speckle regime.  

We also notice that many blocks are blue coded in Fig. 3.12. In fact, for many of these 

blocks the check on model and experimental moments reveals that the model does not fit very 

well the amplitude of the data. The remaining blue blocks have non uniformly distributed 

phase according to the Kolmogorof-Smirnov test. The reason can be the presence of many 

pilons and other nuisance elements like buildings which produce a dominant deterministic 

scattering. Which blocks are declared with non uniform phase is shown in the next figure. 
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Figure 3.13 - Non uniform phase map (brown blocks). 

 

In this map the value 1 (brown color) codes non uniform phase. For the same blocks, in Fig. 

3.12 we find blue color, the other blue blocks in Fig. 3.12 are bad fitted. In this data set we 

choose to investigate speckle statistics also in blocks with non uniform phase, since the 

Kolmogorov-Smirnov test is very selective. Phase can be declared to be non-uniformly 

distributed also when only a little deviation from uniformity is present. Thus, it can be 

important to further analyze the speckle also in these blocks.  

This analysis revealed that block (1,13), containing pixels with range from 1 to 41 and 

azimuth from 600 to 700, that was previously dropped because of the non uniform phase 

declaration from the Kolmogorov-Smirnov test, exhibits a speckle shape parameter . 

A visual inspection of the complex data scatterplot shows that distribution appears to be 

circular. Other blocks are not interesting, either because they contain deterministic scatterers 

or because the estimated shape parameter is almost Gaussian. However, observing the 

following figure with the scene after texture depuration, and the original scene in Fig. 3.11, it 

is easily seen that the interesting block (1,13) contains a few texture transitions, and also a 

ˆ 1.62c =
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strong scatterer. This can sensibly affect the speckle shape parameter estimate, also 

accounting for the reduced dilution effect because of the small block size adopted for this data 

set. This has been confirmed by simulations. 

 
Figure 3.14 - Scene after texture depuration. 

 

Thus, we can infer that result c  is not reliable, and the minimum detected speckle 

shape parameter remains  on block (3,1), i.e. range from 40 to 80, azimuth from 1 to 

100. For this block with a non deep deviation from the Gaussian regime, we show the good 

fitting in terms of normalized moments: 

ˆ 1.62=

ˆ 1.78c =
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Figure 3.15 - Moment fitting for block (3,1). 

 

Results for the other polarizations, VV and HV, are even less interesting in terms of 

deviations from the classical speckle regime. The values of  obtained over the natural areas 

in the image are closer to 2 than for the VV image. 

ĉ

3.6 Third data set 

The data are from an agricultural zone in Recklinghausen, Germany. The data have 

been acquired by the AES-1 X-Band SAR from Aerosensing Radarsysteme, 0.38m range 

resolution, incidence angle 45°, HH polarization. In the SAR scene it is possible to see many 

agricultural fields, small zones with trees, country roads, isolated buildings, and a few strong 

point scatterers, probably pylons. Figure 3.16 shows a part of the scene that we examined: 
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Figure 3.16 - First SAR scene portion (2000x2048 pixels, rg. x az.). 

 

Analysis of this data set was carried out by texture estimation and compensation with 

moving window (patch) size 17x17 and speckle shape parameter estimation on blocks with 

size 128x128. Patch size corresponds to that of the first and second data set, reshaped to 

square to account for the finer range resolution. We also checked again with a visual 

inspection that the typical size of tree canopy is of this order. Block size is intermediate 

between those used for the first and the second data sets. The block used is smaller than that 

of the first data set to cope with possible large spatial variability of the speckle shape 

parameter in the highly visually non stationary natural areas.  

However, the results indicate that the SAR speckle in this image is basically Gaussian, 

as shown in Fig. 3.17 (as usual, blue codes bad fitting or non uniform phase). 
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Figure 3.17 - Shape parameter, patch: 17x17, block: 128x128. 

 

The largest non Gaussian deviation in this portion of the image is given by c =1.9, this 

deviation is very light and therefore it is not interesting.  

ˆ

Similar, slightly more interesting, results are got for the second portion of the image, 

shown in the next figure. 
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Figure 3.18 - Second SAR scene portion (2000x2048 pixels, rg. x az.). 

 

This portion is top adjacent to the previous portion. The corresponding estimated speckle 

shape parameter is shown in Fig. 3.19. 
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Figure 3.19 - Shape parameter, patch: 17x17, block: 128x128. 

 

Values of ≅1.7 are found for blocks (21,4) and (20,5), but they are associated to areas that 

include strong artificial scatterers (buildings, pylons), thus the result is not interesting in the 

framework of our analysis. The next larger deviation from speckle Gaussianity is in block 

(12,19), corresponding to range from 704 to 832, azimuth from 1152 to 1280. Here, =1.8 

and the area is natural, seeming to contain trees. Summarizing, in the third data set only a 

light deviation from Gaussianity of the speckle regime is detected, in a not sensible 

percentage of areas.  

ĉ

ĉ

3.7 Fourth data set 

 The data are from a littoral area in Kohala coast, Hawaii. The data have been acquired 

by the AIRSAR L-Band SAR from NASA Jet Propulsion Laboratory, 7.5m range resolution, 

incidence angle from 70° to 30°, VV polarization. In the SAR scene it is possible to see 

natural areas, roads, urbanized zones, an airport infrastructure, and the ocean. Because of its 
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large dimension, this data set has been split in various sub-images for easier analysis, but only 

those producing the most interesting results will be reported here. In fact, speckle is mainly 

Gaussian in the reported and in all the other sub-images, as expected given the coarse SAR 

resolution. The total data set is composed of 2079x94000 pixels (rg. x az.), each sub-image is 

2709x5000 pixels. 

Fig. 3.20 shows the scene portion from azimuth pixel 20001 to 25000: 

 

 
Figure 3.20 - First SAR scene portion (2709x5000 pixels, rg. x az.). 

 

The black area in far range is ocean, the land zone is natural areas; a road crosses horizontally 

the land area in mid range. Speckle analysis has been carried out with moving window patch 

size 11x25 and estimation on blocks 160x400, as for the first data set. The estimated speckle 

statistics are Gaussian on the ocean and mostly Gaussian on the land, as shown in the next 

figure: 
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Figure 3.21 - Shape parameter, patch: 11x25, block: 160x400. 

 

In fact, the minimum shape parameter estimate is 1.8. More than 96% of the image exhibits a 

shape parameter estimate greater or equal to 1.9.  

 Next figure shows the scene portion from azimuth pixel 25001 to 30000, i.e. the right 

adjacent portion to the previous one. The land area is again natural, apart from the presence of 

the littoral road.  
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Figure 3.22 - Second SAR scene portion (2709x5000 pixels, rg. x az.). 

 

Figure 3.23 reports the corresponding speckle shape parameter estimates.  
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Figure 3.23 - Shape parameter, patch: 11x25, block: 160x400. 

 

Speckle in this image, like in the previous one, is mainly Gaussian. The minimum of c  is 1.8. 

Again, more than 96% of the image exhibits a shape parameter estimate greater or equal to 

1.9. 

ˆ

 The last image portion shown of this data set is the sub image from azimuth pixel 

10001 to 15000, see Fig. 3.24:  
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Figure 3.24 - Third SAR scene portion (2709x5000 pixels, rg. x az.). 

 

Unlike the two previous sub images, this one contains also many areas with artificial 

scatterers, like an urban agglomerate along the coastline, see the top image, an airport on the 

top center-right and another urbanized zone in correspondence of several roads in the central 

left part of the image. Blocks with shape parameter lower than 1.8 are found in 

correspondence of the central left urbanized zone, and of the buildings close to the airport 

lanes. Bad fitting is also detected for other blocks in the airport area and in the urban 

agglomerate along the coastline. The rest of the image exhibits almost Gaussian speckle.   

3.8 Conclusions 

 The speckle analysis carried out on these four different data sets indicates, as 

expected, that deviations from the classical speckle regime on natural areas depend both on 

SAR system parameters and on the nature of the scattering surface. In particular, non 

negligible deviations from the Gaussian regime have been detected in meter resolution X-

Band data at medium grazing angle (first data set) over some forest zones. 
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AAPPPPEENNDDIIXX  AA  
A.1 Goodness-of-Fit Test 

 With the term “goodness-of-fit-test” we generally indicate a procedure to verify (trough 

samples) whether a hypothesis regarding a probability distribution function of a variable is 

acceptable or not. Goodness-of-fit test is a hypothesis test where the hypothesis H0 and the 

alternative hypothesis are respectively: 

 

 H0: the data follow a specified distribution; 

 H1: the data do not follow the specified distribution; 

 

 Significance level α indicates probability to refuse H0 when it is true (first type error). 

The quantity 1-α is the probability that hypothesis H0 is true. With β we indicate second type 

error; in other words, the probability to refuse hypothesis H1 when it is true. Obviously huge 

differences from reality for hypothesis H0 are easy to find, but small differences from reality 

are difficult to detect and these determine high values of β. It is possible to express β by α. 

 Critical values for a hypothesis test are based on the statistic of test and on significance 

level α which determines the sensibility of a test. For α=0.05 H0 hypothesis is rejected with 

5% when it is true. Choice of α is arbitrary, common values are 0.1, 0.05 and 0.01. Critical 

regions include these values of test’s statistic that cause the reject of hypothesis H0 with 

statistic test distribution and significance level α; it is possible to calculate cut-off value for 

test’s statistic. Superior and inferior values (or both) of cut-off (in dependence on test 

direction) define the critical region.  

 Let x1,x2……xn be n independent observations of a random variable with distribution 

function F(x) which is unknown. Suppose that we wish to test the hypothesis: 

 

  H0:  F(x)=F0(x) (A.1) 

 

where F0(x) is some particular distribution function, which may be continuous or discrete. 

The problem of testing (A.1) is called a goodness-of-fit problem. Any test of (A.1) is called a 

test of fit. H0 is a simple hypothesis if F0(x) is completely specified. As instance, the 
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hypothesis that the n observations have come from a normal distribution with specified mean 

and variance is a simple hypothesis. On the other hand, we may wish to test whether the 

observations have come from a normal distribution whose parameters are unspecified, and 

this would be a composite hypothesis. Similarly, if the normal distribution has its mean, but 

not its variance, specified, the hypothesis remains composite. In the case of composite 

hypothesis parameters are estimated by using the observations. The composite hypotheses are 

more common since permit to decide if a sample comes from any distribution of specific type. 

Unfortunately, working with composite hypothesis is more difficult since the critical values 

are difficult to calculate and often we must resort to simulations methods (e.g. Monte Carlo) 

in order to determine the distribution of thetest statistic. 

A.1.1 Kolmogorov-Smirnov Test 
 Kolmogorov-Smirnov (K-S) test is based on the empirical function (ECDF). Given N 

ordered data points Y1, Y2, …, YN, the ECDF is defined as ( ) NinEN =  where n(i) is the 

number of points less than Yi and the Yi are ordered from smallest to largest value. This is a 

step function that increases by 1/N at the value of each ordered data point. 

 Figure A.1 is a plot of the empirical distribution function with a normal cumulative 

distribution function for 100 normal random numbers. The K-S test is based on the maximum 

distance between these two curves. 

 

Figure A.1 - Empirical distribution function (ECDF solid line) and normal distribution (dotted line). 
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 An attractive feature of this test is that the distribution of the K-S test statistic itself does 

not depend on the underlying cumulative distribution function being tested. Another 

advantage is that it is an exact test (the chi-square goodness-of-fit test depends on an adequate 

sample size for the approximations to be valid) despite these advantages, the K-S test has 

several important limitations: 

 

1.  It only applies to continuous distributions. 

2. It tends to be more sensitive near the center of the distribution than at the tails. 

3. Perhaps the most serious limitation is that the distribution must be fully specified. That 

is, if location, scale, and shape parameters are estimated from the data, the critical 

region of the K-S test is no longer valid. It typically must be determined by 

simulation. 

 Due to limitations 2 and 3 above, many analysts prefer to use the Anderson-Darling 

goodness-of-fit test. However, the Anderson-Darling test is only available for a few specific 

distributions. 

In the Table 1.1 we resume the characteristics of K-S test. 

 

H0 The data follow a specified distribution 
Ha The data do not follow a specified distribution 

Test 
statistic 

The Kolmorogov-Smirnov test statistic is defined as: 

( )
N
iYFD iNi

−=
<<1

max  where F is the theoretical cumulative 

distribution of the distribution being tested, which must be a 
continuous distribution (i.e. no discrete distributions such as the 
binomial or Poisson), and it must be fully specified (i.e, the location, 
scale, and shape parameters cannot be estimated from the data). 

Confidence 
level 

α 

Critical 
region 

The hypothesis regarding the distributional form is rejected if the 
test statistic, D, is greater than the critical value obtained from a 
table. There are several variations of these tables in the literature that 
use somewhat different scaling for the K-S test statistic and critical 
regions. These alternative formulations should be equivalent, but it 
is necessary to ensure that the test statistic is calculated in a way that 
is consistent with how the critical values were tabulated. 

Table A.1 - Characteristics of K-S test. 
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 The K-S test is applicable to unbinned distributions that are functions of a single 

independent variable, that is, to data sets where each data point can be associated with a single 

number. In such cases, the list of data points can be easily converted to an unbiased estimator 

 of the cumulative distribution function of the probability distribution from which it 

was drawn. If the N events are located at values x

( )NS x

i, i=1,…,N, then  is the function 

giving the fraction of data points to the left of a given value x. This function is obviously 

constant between consecutive (i.e., sorted into ascending order) x

( )NS x

i’s, and jumps by the same 

constant 1/N at each xi. 

 Different distribution functions, or sets of data, give different cumulative distribution 

function estimates by the above procedure. However, all cumulative distribution function 

agree at the smallest allowable value of x (where they are zero), and at the largest allowable 

value of x (where they are unity).The smallest and largest values might of course be ±∞. So it 

is the behavior between the largest and smallest values that distinguishes distributions. 

 One can think of any number of statistics to measure the overall difference between two 

cumulative distribution functions: the absolute value of the area between them, for example, 

or their integrated mean square difference. The Kolmogorov-Smirnov D is a particularly 

simple measure: it is defined as the maximum value of the absolute difference between two 

cumulative distribution function. Thus for comparing one data set’s  to a known 

cumulative distribution function , the K-S statistic is: 

( )NS x

( )P x

 

  ( ) ( )max Nx
D S x P

−∞< <∞
= − x  (A.2) 

 

while for comparing two different cumulative distribution functions  and , the 

K-S statistic is: 

( )
1NS x ( )

2NS x

 

  ( ) ( )
1 2

max N Nx
D S x S

−∞< <∞
= − x  (A.3) 
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Figure A.2 - Statistic D of K-S test. P(x) theoretical distribution, SN(x) empirical distribution. 

 

 What makes the K-S statistic useful is that its distribution in the case of the null 

hypothesis (data sets drawn from the same distribution) can be calculated, at least to useful 

approximation, thus giving the significance of any observed nonzero value of D. A central 

feature of the K-S test is that invariant under reparametrization of x; in other words, you can 

locally slide or stretch the x axis in figure 1.4, and the maximum distance D remains 

unchanged. For example, you will get the same significance using x as using log x. 

 The function that enters into the calculation of the significance can be written as the 

following sum: 

 

  ( ) ( ) 2 21 2

1

2 1 j j
KS

j

Q e λλ
∞

− −

=

= −∑  (A.4) 

 

which is a monotonic function with the limiting values ( )0KS 1Q =  and . ( ) 0KSQ ∞ =
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 In terms of this function the significance level of an observed value of D (as a disproof 

of the null hypothesis that the distributions are the same) is given approximately by the 

formula 

 

  ( ) ( )Prob 0.12 0.11KS e eD observed Q N N D > = + +   (A.5) 

 

where  for the case (A.2) and eN = N 1 2

1 2
e

N NN
N N

=
+

 for the case (A.3) of two distributions, 

where N1 is the number of data points in the first distribution, N2 the number in the second. 

The nature of the approximation involved in (A.5) is that it becomes asymptotically accurate 

as the  Ne becomes large, but is already quite good for Ne ≥ 4, as small a number as one might 

ever actually use. 

So, we have the following routines for the cases of one and two distributions (C language): 

 
 
#include <math.h> 
#include "nrutil.h" 
 
void ksone(float data[], unsigned long n, float (*func)(float), float *d, 
    float *prob) 
 
Given an array data[1..n], and given a user-supplied function of a single variable 
func which is a cumulative distribution function ranging from 0 (for smallest 
values of its argument) to 1 (for largest values of its argument), this routine 
returns the K–S statistic d, and the significance level prob. Small values of prob 
show that the cumulative distribution function of data is significantly different 
from func. The array data is modified by being sorted into ascending order. 
 
{ 
    float probks(float alam); 
    void sort(unsigned long n, float arr[]); 
    unsigned long j; 
    float dt,en,ff,fn,fo=0.0; 
 
    sort(n,data);                    If the data are already sorted into  
                  ascending order, then this call can be omitted. 
    en=n;                             
    *d=0.0; 
    for (j=1;j<=n;j++) {                    Loop over the sorted data points. 
        fn=j/en;                            Data’s c.d.f. after this step. 
        ff=(*func)(data[j]);                Compare to the user-supplied  
               function. 
        dt=FMAX(fabs(fo-ff),fabs(fn-ff));   Maximum distance. 
        if (dt > *d) *d=dt; 
        fo=fn; 
    } 
    en=sqrt(en); 
    *prob=probks((en+0.12+0.11/en)*(*d));        Compute significance. 
} 
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#include <math.h> 
 
void kstwo(float data1[], unsigned long n1, float data2[], unsigned long n2, 
    float *d, float *prob) 
 
Given an array data1[1..n1], and an array data2[1..n2], this routine returns the K–
S statistic d, and the significance level prob for the null hypothesis that the 
data sets are drawn from the same distribution. Small values of prob show that the 
cumulative distribution function of data1 is significantly different from that of 
data2. The arrays data1 and data2 are modified by being sorted into ascending 
order. 
 
{ 
    float probks(float alam); 
    void sort(unsigned long n, float arr[]); 
    unsigned long j1=1,j2=1; 
    float d1,d2,dt,en1,en2,en,fn1=0.0,fn2=0.0; 
 
    sort(n1,data1); 
    sort(n2,data2); 
    en1=n1; 
    en2=n2; 
    *d=0.0; 
    while (j1 <= n1 && j2 <= n2) {                          If we are not done... 
        if ((d1=data1[j1]) <= (d2=data2[j2])) fn1=j1++/en1; Next step is in 
                                            data1. 
        if (d2 <= d1) fn2=j2++/en2;                        Next step is in data2. 
        if ((dt=fabs(fn2-fn1)) > *d) *d=dt; 
    } 
    en=sqrt(en1*en2/(en1+en2)); 
    *prob=probks((en+0.12+0.11/en)*(*d));                  Compute significance. 
} 

 

Both of the above routines use the following routine for calculating the function QKS [Pre02]: 
 

#include <math.h> 
#define EPS1 0.001 
#define EPS2 1.0e-8 
 
float probks(float alam) 
Kolmogorov-Smirnov probability function. 
{ 
    int j; 
    float a2,fac=2.0,sum=0.0,term,termbf=0.0; 
 
    a2 = -2.0*alam*alam; 
    for (j=1;j<=100;j++) { 
        term=fac*exp(a2*j*j); 
        sum += term; 
        if (fabs(term) <= EPS1*termbf || fabs(term) <= EPS2*sum)    return sum; 
        fac = -fac;                                    Alternating signs in sum. 
        termbf=fabs(term); 
    } 
    return 1.0;                            Get here only by failing to converge. 
} 

 

A.1.2 Variants of Kolmogorov-Smirnov test 
 The sensitivity of the K-S test to deviations from a cumulative distributions function 

P(x) is not independent of x. In fact, the K-S test tends to be most sensitive around the median 
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value, where P(x) =0.5, and less sensitive at the extreme ends of the distribution, where P(x) 

is near 0 or 1. The reason is that the difference ( ) ( )xPxSN −  does not, in the null hypothesis, 

have a probability distribution that is independent of x. Rather, its variance is proportional to 

, which is largest at P=0.5. Since the K-S statistic (A.2) is the maximum 

difference over all x of two cumulative distribution functions, a deviation that might be 

statistically significant at its own value of x gets compared to the expected chance deviation at 

P=0.5. and is thus discounted. A result is that, while the K-S test is good at finding shifts in a 

probability distribution especially changes in the median value, it is not always so good at 

finding spreads, which more affect the tails of the probability distribution, and which may 

leave the median unchanged. 

( ) ( )[ xPxP −1 ]

 One way of increasing the power of the K-S statistic out on the tails is to replace D by a 

so-called stabilized or weighted statistic, for example the Anderson-Darling statistic, 

 

  
( ) ( )

( ) ( )
* max

1
N

x

S x P x
D

P x P x−∞< <∞

−
=

−  
 (A.6) 

 

 Unfortunately, there is no simple formula analogous to equations (A.4) and (A.5) for 

this statistic. There are many other possible similar statistics, for example 

 

  
( ) ( )
( ) ( )

( )
2

1

0
**

1
N

P

S x P x
D

P x P x=

−  =
−  

∫ dP x  (A.7) 

 

which is also discussed by Anderson and Darling. 

 Another approach is due to Kuiper. We already mentioned that the standard K-S test is 

invariant under reparametrization of the variable x. An even more general symmetry, which 

guarantees equal sensitive at all values of x, is to wrap the x axis around into a circle 

(identifying the points at ±∞), and to look  for a statistic that is now invariants under all shifts 

and parametrizations on the circle. This allows, for example, a probability distribution to be 

“cut” at some central value of x, and the left and right halves to be interchanged, without 

altering the statistic or its significance. 

 Kuiper’s statistic, defined as  
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  ( ) ( ) ( ) (max maxN Nx x
V D D S x P x P x S x+ − −∞< <∞ −∞< <∞
= + = − + − )        (A.8) 

 

is the sum of the maximum distance of ( )NS x  above and below P(x). You should be able to 

convince yourself that this statistic has the desired invariance on the circle (D+ and D- change 

individually but their sum is constant). 

 Furthermore, there is a simple formula for the asymptotic distribution of the statistic V, 

directly analogous to equations (A.4)-(A.5). The function Q is given by the follow formula: 

  ( ) ( ) 2 22 2 2

1

2 4 1 j
KP

j

Q j e λλ λ
∞

−

=

= −∑  (A.9) 

 

which is monotonic and satisfies ( )0 1KPQ =  ( ) 0KPQ ∞ = . 

 In term of this function the significance level (1-α) is given by 

 

  ( ) ( )Prob observed 0.155 0.24KP e eV Q N N V > = + +   (A.10) 

here in the one-sample case, or is given by equation eN N= 1 2

1 2
e

N NN
N N

=
+

 in the case of the 

two samples. 

 

We report the matlab script of function for to calculate K-S probability: 
 
function [D,n] = probks(Q) 
 
% function D = PROBKS(Q) calculates for the Kolmogorov -Smirnov statistic d the 
%significance level prob. 
% See KSTWO. Adapted from Press, Teukolsky, Vetterling 
% and Flannery, Numerical Recipes in Fortran p620. 
% Checked using in XPROBKS in Numerical Recipes Example, Book p185 
 
% Version 1.0 RHS 8/11/93 
 
a2=-2.0*Q.^2; 
factor=2; 
D=0; 
termbf=0; 
term=1; 
for n=1:100 
    term=factor*exp(a2*n^2); 
    D=D+term; 
    if abs(term)<=0.001*termbf | abs(term)<=1e-8*D 
        break 
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    end 
    factor=-factor; 
    termbf=abs(term); 
end 
probks=2;                % get here by failing to converge 
 
 

We report the matlab script of function for to calculate Kuiper probability 
 
function [D,n] = probkp(Q) 
 
a2=2.0*Q.^2; 
factor=2; 
D=0; 
termbf=0; 
term=1; 
for n=1:100 
 term=factor*(2*a2*n^2-1)*exp(-a2*n^2); 
 D=D+term; 
 if abs(term)<=0.001*termbf | abs(term)<=1e-8*D 
  break 
 end 
 termbf=abs(term); 
end 
probkp=2;           % get here by failing to converge 

 

 
A.1.3 Remarks 
 By observing the matlab scripts, we note that the probks function needs as input the 

test statistics. By using different test, test statistic changes. In the K-S test, the statistic is 

given by (A.2) (or by (A.3) if we are in the case of two distribution) while for the Kuiper test 

the statistic is given by (A.8). Expressions (A.5) and (A.10) show that the Q functions have 

similar statistics multiplied by two different factors for the case of K-S or Kuiper tests. In 

(A.5)-(A.10), the Ne term appears with different coefficients. Actually we used in our 

simulation the following expressions, defined as “modified statistic” of test 

 

  ( ) DNN ee ⋅++ /11.012.0      and    ( ) VNN ee ⋅++ /24.0155.0  (A.11) 

 

 We introduced this modified statistics because of the use of finite data points, as done in 

[Ste70]. 
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